Algorithmic of translation surfaces

V. Delecroix CNRS - Université de Bordeaux (jw J. Rüth)

CIRM, SoS, 2022

V. Delecroix CNRS - Université de Bordeaux

Algorithmic of translation surfaces

CIRM, SoS, 2022

What and why

V. Delecroix CNRS - Université de Bordeaux Algorithmic of translation surfaces CIRM, SoS, 2022

What is a translation surface?

definition: edge to edge gluings by translation.

What is a translation surface?

definition: edge to edge gluings by translation.

convenient encoding: T a triangulation, E(T) = oriented edges. A *translation structure* is $e \in E(T) \mapsto v(e) \in \mathbb{R}^2$ such that

• for each edge
$$e : v(-e) = -v(e)$$
,

• for each triangle $e_1, e_2, e_3 : v(e_1) + v(e_2) = -v(e_3)$ and $\det(e_1, e_2) > 0.$

Why do we study translation surfaces?

- simpler than hyperbolic geometry
- same flavour than embedded graphs geometry
- (algebraic geometry) a translation surface is a Riemann surface endowed with a nonzero holomorphic one form
- (dynamics) polygonal billiards

Goal of the talk

- algorithmic of translation surfaces and implementation in https://flatsurf.github.io/
- four open questions and two conjectures

Geometry

V. Delecroix CNRS - Université de Bordeaux Algorithmic of translation surfaces CIRM, SoS, 2022

Saddle connections and flat triangulations

Definition

saddle connection : straight line segment joining two conical singularities. *flat triangulation* : triangulation of the translation surface whose edges are saddle connections

The space of triangulations of M

Theorem (folklore?)

Any set of saddle connections in M with disjoint interiors can be completed into a flat triangulation.

8/18

The space of triangulations of M

Theorem (folklore?)

Any set of saddle connections in M with disjoint interiors can be completed into a flat triangulation.

Theorem (Masur)

Any two flat triangulations of M can be joined by a sequence of edge flips.

Delaunay triangulation

Theorem (Veech?)

One can compute the Delaunay triangulation (with respect to the set of conical singularities) via edge flipping.

Delaunay triangulation

Theorem (Veech?)

One can compute the Delaunay triangulation (with respect to the set of conical singularities) via edge flipping.

Consequence: one can

- compute the shortest saddle connection
- decide isometry between two translation surfaces

(available in flatsurf)

Delaunay triangulation

Theorem (Veech?)

One can compute the Delaunay triangulation (with respect to the set of conical singularities) via edge flipping.

Consequence: one can

- compute the shortest saddle connection
- decide isometry between two translation surfaces

(available in flatsurf)

conjecture 1: Given $(T, \{v(e)\}_{e \in E(T)})$, one can compute the Delaunay triangulation in $O(\log \max_{e \in E(T)} ||v(e)||)$.

Enumerating saddle connections

Theorem (Masur, Vorobets)

The number of saddle connections of length at most L on M is $\Theta(L^2)$.

10/18

Enumerating saddle connections

Theorem (Masur, Vorobets)

The number of saddle connections of length at most L on M is $\Theta(L^2)$.

Theorem (folklore)

There is a $O(L^3)$ -algorithm to list saddle connections.

(available in flatsurf)

10/18

Enumerating saddle connections

Theorem (Masur, Vorobets)

The number of saddle connections of length at most L on M is $\Theta(L^2)$.

Theorem (folklore)

There is a $O(L^3)$ -algorithm to list saddle connections.

(available in flatsurf)

conjecture 2: There is a $O(L^2)$ -algorithm (aka optimal) based on flips in triangulation.

Tightening geodesics

Theorem (folklore)

A curve in a translation surface is a geodesic if and only if it is a concatenation of straight line segments meeting at conical singularities with angles $\geq \pi$. Given a path which is a concatenation of saddle connections, there is a tightening procedure to homotope the path to a geodesic.

(available in flatsurf)

Tightening geodesics

Theorem (folklore)

A curve in a translation surface is a geodesic if and only if it is a concatenation of straight line segments meeting at conical singularities with angles $\geq \pi$. Given a path which is a concatenation of saddle connections, there is a tightening procedure to homotope the path to a geodesic.

(available in flatsurf)

Consequence: one can compute distances in the universal cover of M and in particular the bottom of the length spectrum (not yet in flatsurf).

Tightening geodesics

Theorem (folklore)

A curve in a translation surface is a geodesic if and only if it is a concatenation of straight line segments meeting at conical singularities with angles $\geq \pi$.

Given a path which is a concatenation of saddle connections, there is a tightening procedure to homotope the path to a geodesic.

(available in flatsurf)

Consequence: one can compute distances in the universal cover of M and in particular the bottom of the length spectrum (not yet in flatsurf). **open questions 1 and 2:**

- complexity of tightening (possible combinatorial explosion)
- how hard it is to approximate the volume entropy?

Translation flow (\mathbb{R} -action on M)

12/18

V. Delecroix CNRS - Université de Bordeaux Algorithmic of translation surfaces CIRM, SoS, 2022

14 / 18

Theorem (Katok, Keane)

M a translation surface. $\phi_M^t : M \to M$ its translation flow. $x \in M$ with infinite orbit. Then $\overline{\{\phi_M^t(x) : t \ge 0\}}$ is either

- a circle (iff x is a periodic point)
- or a subsurface bounded by finitely many saddle connections.

Theorem (Katok, Keane)

M a translation surface. $\phi_M^t : M \to M$ its translation flow. $x \in M$ with infinite orbit. Then $\overline{\{\phi_M^t(x) : t \ge 0\}}$ is either

- a circle (iff x is a periodic point)
- or a subsurface bounded by finitely many saddle connections.

consequence: the surface decomposes into finitely many

- cylinders,
- minimal components
- saddle connections.

Theorem (VD + Julian Rüth)

There exists a semi-algorithm that compute and certify the decomposition of the surface into cylinders + minimal components + saddle connections.

Theorem (VD + Julian Rüth)

There exists a semi-algorithm that compute and certify the decomposition of the surface into cylinders + minimal components + saddle connections.

delicate bit : certification of a minimal component.

Theorem (VD + Julian Rüth)

There exists a semi-algorithm that compute and certify the decomposition of the surface into cylinders + minimal components + saddle connections.

delicate bit : certification of a minimal component. terminates under a technical but generic enough condition.

Theorem (VD + Julian Rüth)

There exists a semi-algorithm that compute and certify the decomposition of the surface into cylinders + minimal components + saddle connections.

delicate bit : certification of a minimal component. terminates under a technical but generic enough condition.

open question 3: is the following decidable INPUT: *M* and $x, y \in M$ OUTPUT: whether $y \in \overline{\{\phi_M^t(x) : t \ge 0\}}$

Theorem (VD + Julian Rüth)

There exists a semi-algorithm that compute and certify the decomposition of the surface into cylinders + minimal components + saddle connections.

delicate bit : certification of a minimal component. terminates under a technical but generic enough condition.

open question 3: is the following decidable INPUT: *M* and $x, y \in M$ OUTPUT: whether $y \in \overline{\{\phi_M^t(x) : t \ge 0\}}$

open question 3': is the following decidable INPUT: *M* and $x, y \in M$ OUTPUT: whether $y \in \{\phi_M^t(x) : t \ge 0\}$

$\mathsf{GL}_2(\mathbb{R})\text{-}\mathsf{action}$ on the moduli space of translation surfaces

17 / 18

 $\mathcal{H}_g := \{ \text{translation surfaces of genus } g \} / \{ \text{isometries preserving the vertical} \}$

18/18

$$\label{eq:Hg} \begin{split} \mathcal{H}_g &:= \{ \text{translation surfaces of genus } g \} / \{ \text{isometries preserving the vertical} \} \\ GL_2(\mathbb{R}) \text{ acts on } \mathcal{H}_g \end{split}$$

$$\label{eq:Hg} \begin{split} \mathcal{H}_g &:= \{ \text{translation surfaces of genus } g \} / \{ \text{isometries preserving the vertical} \} \\ \mathsf{GL}_2(\mathbb{R}) \text{ acts on } \mathcal{H}_g \end{split}$$

Theorem (Eskin-Mirzakhani-Mohammadi)

For any M, $\overline{GL_2(\mathbb{R}) \cdot M}$ is nice.

$$\label{eq:Hg} \begin{split} \mathcal{H}_g &:= \{ \text{translation surfaces of genus } g \} / \{ \text{isometries preserving the vertical} \} \\ \mathsf{GL}_2(\mathbb{R}) \text{ acts on } \mathcal{H}_g \end{split}$$

Theorem (Eskin-Mirzakhani-Mohammadi)

For any M, $\overline{GL_2(\mathbb{R}) \cdot M}$ is nice.

open question 4: is the following decidable INPUT: $M, M' \in \mathcal{H}_g$ OUTPUT: whether $M' \in \overline{GL_2(\mathbb{R}) \cdot M}$

$$\label{eq:Hg} \begin{split} \mathcal{H}_g &:= \{ \text{translation surfaces of genus } g \} / \{ \text{isometries preserving the vertical} \} \\ \mathsf{GL}_2(\mathbb{R}) \text{ acts on } \mathcal{H}_g \end{split}$$

Theorem (Eskin-Mirzakhani-Mohammadi)

For any M, $\overline{GL_2(\mathbb{R}) \cdot M}$ is nice.

open question 4: is the following decidable INPUT: $M, M' \in \mathcal{H}_g$ OUTPUT: whether $M' \in \overline{GL_2(\mathbb{R}) \cdot M}$

open question 4': is the following decidable INPUT: $M, M' \in \mathcal{H}_g$ OUTPUT: whether $M' \in \overline{\operatorname{GL}_2(\mathbb{R}) \cdot M}$

 $\mathcal{H}_{g} := \{\text{translation surfaces of genus g}\}/\{\text{isometries preserving the vertical}\}$ $GL_2(\mathbb{R})$ acts on \mathcal{H}_{σ}

Theorem (Eskin-Mirzakhani-Mohammadi)

For any M, $GL_2(\mathbb{R}) \cdot M$ is nice.

open question 4: is the following decidable INPUT: $M, M' \in \mathcal{H}_{\sigma}$ OUTPUT: whether $M' \in \overline{\operatorname{GL}_2(\mathbb{R}) \cdot M}$

open question 4': is the following decidable INPUT: $M, M' \in \mathcal{H}_{g}$ OUTPUT: whether $M' \in \overline{\operatorname{GL}_2(\mathbb{R}) \cdot M}$ partial result : there exists a semi-algorithm to compute $GL_2(\mathbb{R}) \cdot M$ (available in flatsurf). V. Delecroix CNRS - Université de Bordeaux