Periodic Weaving Diagrams

Structures on Surfaces CIRM

Definition of an Untwisted Weave

Examples of Crossing Sequences

Examples of Crossing Sequences

Definition of a Weaving Diagram

Equivalence Classes of Weaves
Problem: different weaving diagrams can be characterized by the same pair (graph, crossing information).
\rightarrow We must therefore find a way to distinguish them.

Biaxial Twill $(+2,-2)$

Same number of sets of threads and same set of crossing sequences BUT different "designs".

NB: different properties for the materials

- Basket weave: reversible, rigid and strong
- Twill weave: non-reversible, textured and flexible
\qquad

Example: Weaving Motif \rightarrow Crossing Matrices

- Number of sets of threads: $\mathrm{N}=3$
- Γ : sets of geodesics $(1,0),(0,1),(1,1)$
- Set of crossing sequences: $\boldsymbol{\Sigma}=\left\{(2,1)_{3}\right\}$
- Set of crossing-matrices Π :

$\mathrm{M}_{1,2}$
$M_{2,3}$
$M_{3,1}$
$=$

+1	-1	+1
+1	+1	-1
-1	+1	+1

Achievement Goal

Classification table of weaves with relevant parameters for applications

CLASSIFICATION SQUARE WEAVING DIAGRAMS: $\mathbf{N}=2$							
Name	Set of Crossing Sequences	Crossing number (Writhe)	Minimal Diagram	Set of Crossing Matrices	Matrices	Symmetry	...
Twill Square Weave $(2,2)$	\{(2,2) $\}$	$\begin{gathered} 4 \\ (0) \end{gathered}$		$\left\{\left(\begin{array}{llll}+1 & +1 & -1 & -1 \\ -1 & +1 & +1 & -1 \\ -1 & -1 & +1 & +1 \\ +1 & -1 & -1 & +1\end{array}\right)\right\}$	Rank $=2$ (Diagonal configuration)	?	\ldots
Basket Square Weave $(2,2)$	\{(2,2) $\}$	$\begin{gathered} 8 \\ (0) \end{gathered}$		$\left\{\left(\begin{array}{llll}+1 & +1 & -1 & -1 \\ +1 & +1 & -1 & -1 \\ -1 & -1 & +1 & +1 \\ -1 & -1 & +1 & +1\end{array}\right)\right\}$	$\begin{gathered} \text { Rank = } 1 \\ \text { (Plain } \\ \text { configuration) } \end{gathered}$?	\ldots
CLASSIFICATION KAGOME WEAVING DIAGRAMS: $\mathbf{N}=3$							
Kagome Weave $(2,1)_{3}$	$\begin{gathered} \{(2,1),(2,1) \\ ,(2,1)\} \end{gathered}$	$\begin{aligned} & 27 \\ & (3) \end{aligned}$		$\left\{\begin{array}{l}\left(\begin{array}{ccc}+1 & +1 & -1 \\ -1 & +1 & +1 \\ +1 & -1 & +1\end{array}\right) \\ \left(\begin{array}{ccc}+1 & +1 & -1 \\ +1 & -1 & +1 \\ -1 & +1 & +1\end{array}\right) \\ \left(\begin{array}{ccc}+1 & -1 & +1 \\ +1 & +1 & -1 \\ -1 & +1 & +1\end{array}\right)\end{array}\right\}$	$\text { Rank = } 3$ Rank $=3$ Rank $=3$ (Diagonal configuration)	?	\ldots

[^0]
Hyperbolic Case ?

THANK YOU VERY MUCH FOR YOUR ATTENTION

Q\&A

This work is supported by a Research Fellowship from JST CREST Grant Number JPMJCR17J4
Ref: M. Fukuda, M. Kotani, S. Mahmoudi. Classification of doubly periodic untwisted (p, q)-weaves by their crossing number, arXiv:2108.09464

[^0]: Sonia Mahmoudi __ Periodic Weaving Diagrams __ Structures on Surfaces CIRM__ May 2, 2022

