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Veech surfaces
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We’ll restrict to Veech surfaces in what follows.

Think: Dynamically similar to torus



Periodic Points

A point in M is periodic if it has finite SL(M)-orbit
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Periodic Points

(Gutkin-Hubert-Schmidt ‘03):                                         
If M is Veech and “not torus-like”,                                 
then it has finitely many periodic points.
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Applications to billiards problems,                  
evidence for orbit closure,                                 
counting holomorphic sections…
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Regular 2n-gons

Wright: 
Ward-Veech



How can we 
classify periodic 
points on general 
Veech surfaces? 



An Algorithm

Theorem (CEFL ‘21): There is an algorithm that,                   
given a “non-torus-like” Veech surface as input,                             
outputs the periodic points on that surface. 
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Applications

Theorem (CEFL ‘21): Prym eigenforms in the minimal stratum 
in genus 3 with discriminant at most 100 have only fixed 
points of the Prym involution as periodic points.
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Theorem (CEFL ‘21): Prym eigenforms in the minimal stratum 
in genus 3 with discriminant at most 100 have only fixed 
points of the Prym involution as periodic points.

Theorem (F, in progress): Prym eigenforms in the minimal 
strata in genera 2, 3 and 4 have only fixed points of the Prym 
involution as periodic points.



Thanks!
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