Computing complete hyperbolic structures on cusped 3-manifolds

Owen Rouillé
Inria Sophia Antipolis - Méditerranée

May 16, 2022

A brief history of knot censuses

Lord Kelvin believed: entanglement \Longrightarrow chemical properties of elements.

A brief history of knot censuses

Lord Kelvin believed: entanglement \Longrightarrow chemical properties of elements.

Crossings	year	Quantity	
10	1899	200	Tait, Kirkman and Little

A brief history of knot censuses

Lord Kelvin believed: entanglement \Longrightarrow chemical properties of elements.

Crossings	year	Quantity	
10	1899	200	Tait, Kirkman and Little
11	1967	700	Conway

A brief history of knot censuses

Lord Kelvin believed: entanglement \Longrightarrow chemical properties of elements.

Crossings	year	Quantity	
10	1899	200	Tait, Kirkman and Little
11	1967	700	Conway
13	1983	10 thousand	Dowker and Thistlethwaite

A brief history of knot censuses

Lord Kelvin believed: entanglement \Longrightarrow chemical properties of elements.

Crossings	year	Quantity	
10	1899	200	Tait, Kirkman and Little
11	1967	700	Conway
13	1983	10 thousand	Dowker and Thistlethwaite
16	1998	1.5 million	Hoste, Thistlethwaite and Weeks

A brief history of knot censuses

Lord Kelvin believed: entanglement \Longrightarrow chemical properties of elements.

Crossings	year	Quantity	
10	1899	200	Tait, Kirkman and Little
11	1967	700	Conway
13	1983	10 thousand	Dowker and Thistlethwaite
16	1998	1.5 million	Hoste, Thistlethwaite and Weeks
19	2020	350 million	Burton

A brief history of knot censuses

Lord Kelvin believed: entanglement \Longrightarrow chemical properties of elements.

Crossings	year	Quantity	
10	1899	200	Tait, Kirkman and Little
11	1967	700	Conway
13	1983	10 thousand	Dowker and Thistlethwaite
16	1998	1.5 million	Hoste, Thistlethwaite and Weeks
19	2020	350 million	Burton

With several mistakes on the way...

Knots

Figure-eight knot ${ }^{1}$

Ambient isotopy

Continuous distortion of the ambient space.
${ }^{1}$ https://en.wikipedia.org/wiki/Figure-eight_knot_(mathematics)

3-Manifolds and knots

Gordon-Luecke theorem (1989)

The complements of two piecewise linear knots are homeomorphic if and only if the knots are equivalent.

3-Manifolds and knots

Gordon-Luecke theorem (1989)

The complements of two piecewise linear knots are homeomorphic if and only if the knots are equivalent.

3-Manifolds and knots

Gordon-Luecke theorem (1989)

The complements of two piecewise linear knots are homeomorphic if and only if the knots are equivalent.

\rightarrow We work with $S^{3} \backslash K$. It is an open, orientable, cusped 3-manifold.

3-Manifolds and knots

Gordon-Luecke theorem (1989)

The complements of two piecewise linear knots are homeomorphic if and only if the knots are equivalent.

\rightarrow We work with $S^{3} \backslash K$. It is an open, orientable, cusped 3-manifold.

Theorem (Thurston)

Knots are either satellites, torus or hyperbolic.

Complete hyperbolic structures

Provides a hyperbolic metric on the manifold.

Complete hyperbolic structures

Provides a hyperbolic metric on the manifold.

Mostow rigidity
The geometry is unique.

Complete hyperbolic structures

Provides a hyperbolic metric on the manifold.

Mostow rigidity
The geometry is unique.

The hyperbolic volume
Great invariant linked to many theories and conjectures.

Outline

(1) Background
(2) The gluing equations
(3) Casson and Rivin
(4) Volume maximization
(5) Combinatorial modifications
(1) Background

(2) The gluing equations

Generalized triangulations

Triangulated 3-manifolds with self-identifications.

Generalized triangulations

Triangulated 3-manifolds with self-identifications.

Pachner moves

Theorem (Pachner, 1991)

Any two triangulations of a piecewise linear 3-manifold can be linked by a sequence of Pachner moves.

Knot complement triangulations

Knot complement triangulations

Knot complement triangulations

All 3-manifolds are triangulable, and there exists an algorithm for knots complements.

Hyperbolic ideal tetrahedra

Definition

A hyperbolic ideal tetrahedron is the convex hull of four distinct points on $\partial \mathbb{H}^{3}$.

Hyperbolic ideal tetrahedra

Definition

A hyperbolic ideal tetrahedron is the convex hull of four distinct points on $\partial \mathbb{H}^{3}$.

Either described with a single complex parameter or three dihedral angles.

(1) Background

(2) The gluing equations
(5) Combinatorial modifications

Getting a hyperbolic manifold

Every point must have a neighborhood isometric to a sphere.

Getting a hyperbolic manifold

Every point must have a neighborhood isometric to a sphere.

Getting a hyperbolic manifold

Every point must have a neighborhood isometric to a sphere.

Getting a hyperbolic manifold

Every point must have a neighborhood isometric to a sphere.

Completeness around the cusp

Theorem

The hyperbolic metric of the 3-manifold is complete if and only if the euclidean metric on the boundary torus is complete.

Normal curves and holonomy

Normal curve

A sequence of segments cutting the triangles only by their edges.

Thurston gluing equations (1980)

Edge equations

$$
\sum_{i} \log \left(z_{i}\right)=2 i \pi
$$

Thurston gluing equations (1980)

Edge equations

$$
\sum_{i} \log \left(z_{i}\right)=2 i \pi
$$

Completeness equations

$$
\forall \sigma \in \partial M, H(\sigma)=0
$$

Thurston gluing equations (1980)

Edge equations

$$
\sum_{i} \log \left(z_{i}\right)=2 i \pi
$$

Completeness equations

$$
\forall \sigma \in \partial M, H(\sigma)=0
$$

Complete hyperbolic structure problem

- Input: triangulation τ of a knot complement.
- Output: complete hyperbolic structure on τ.

SnapPy

Uses Newton's method to directly solve Thurston's equations.

SnapPy

Uses Newton's method to directly solve Thurston's equations.

- No guarantees on the convergence speed.
- No studies of the failures cases.
- No methods/heuristics to find geometrizable triangulations.

(1) Background

(2) The gluing equations

(3) Casson and Rivin

4 Volume maximization

The polytope of angle structures

- all angles are in $] 0, \pi[$;
- the diahedral angles of the tetrahedra sum to π;
- around each edge, the angles sum to 2π.

The polytope of angle structures

- all angles are in $] 0, \pi[$;
- the diahedral angles of the tetrahedra sum to π;
- around each edge, the angles sum to 2π.

Angle structures can be represented in $\mathbb{R}^{3|\tau|}$

The polytope of angle structures

- all angles are in $] 0, \pi[$;
- the diahedral angles of the tetrahedra sum to π;
- around each edge, the angles sum to 2π.

Angle structures can be represented in $\mathbb{R}^{3|\tau|}$

Lemma (Neumann, 1992)

With τ the triangulation and $\mathcal{A}(\tau)$ the polytope of angle structures:

$$
\operatorname{dim} \mathcal{A}(\tau)=|\tau|+|\partial M|
$$

Existence of a hyperbolic metric

Theorem (Casson)
If $\mathcal{A}(\tau) \neq \emptyset$, then M admits a complete hyperbolic metric.

Existence of a hyperbolic metric

Theorem (Casson)

If $\mathcal{A}(\tau) \neq \emptyset$, then M admits a complete hyperbolic metric.

Theorem (Casson, Rivin, 1994)

A point $p \in \mathcal{A}(\tau)$ corresponds to a complete hyperbolic metric on the interior of M if and only if p is a critical point of the volume functional $\mathcal{V}: \mathcal{A}(\tau) \rightarrow \mathrm{R}$.

Existence of a hyperbolic metric

Theorem (Casson)

If $\mathcal{A}(\tau) \neq \emptyset$, then M admits a complete hyperbolic metric.

Theorem (Casson, Rivin, 1994)

A point $p \in \mathcal{A}(\tau)$ corresponds to a complete hyperbolic metric on the interior of M if and only if p is a critical point of the volume functional $\mathcal{V}: \mathcal{A}(\tau) \rightarrow \mathrm{R}$.

Strategy \rightarrow maximize \mathcal{V} over $\mathcal{A}(\tau)$.

Leading-trailing deformations

Leading-trailing deformations

Volume of an angle structure

Lobachevsky function

$$
ת(x)=-\int_{0}^{x} \log |2 \sin t| \mathrm{d} t
$$

Volume of an angle structure

Lobachevsky function

$$
ת(x)=-\int_{0}^{x} \log |2 \sin t| \mathrm{d} t
$$

Volume of an ideal tetrahedron

$$
\mathcal{V}(\alpha, \beta, \gamma)=Л(\alpha)+Л(\beta)+Л(\gamma)
$$

(1) Background

(2) The gluing equations

(3) Casson and Rivin
(4) Volume maximization

(5) Combinatorial modifications

Convexity

Optimization problem

- Maximize \mathcal{V} over $\mathcal{A}(\tau)$.
- A base of $\mathcal{A}(\tau)$ is can be easily computed.
- \mathcal{V} is the sum of the volumes of the tetrahedra.

Lemma (Rivin, 1994)

\mathcal{V} is strictly concave on a ideal hyperbolic tetrahedron.

Convexity

Optimization problem

- Maximize \mathcal{V} over $\mathcal{A}(\tau)$.
- A base of $\mathcal{A}(\tau)$ is can be easily computed.
- \mathcal{V} is the sum of the volumes of the tetrahedra.

Lemma (Rivin, 1994)

\mathcal{V} is strictly concave on a ideal hyperbolic tetrahedron.

- Let p_{1} and p_{2} the smallest angles of a tetrahedron T .
- Let w a linear transformation over the angles of T, with coefficients w_{1}, w_{2} and w_{3} such that $w_{1}+w_{2}+w_{3}=0$.

$$
-\frac{\partial^{2} \mathcal{V}(T)}{\partial w^{2}}=\frac{\left(w_{1}+w_{2}\right)^{2}+\left(w_{1} \cot p_{1}-w_{2} \cot p_{2}\right)^{2}}{\cot p_{1}+\cot p_{2}}
$$

The behavior of the volume

$$
-\frac{\partial^{2} \mathcal{V}(T)}{\partial w^{2}}=\frac{\left(w_{1}+w_{2}\right)^{2}+\left(w_{1} \cot p_{1}-w_{2} \cot p_{2}\right)^{2}}{\cot p_{1}+\cot p_{2}}
$$

The behavior of the volume

$$
-\frac{\partial^{2} \mathcal{V}(T)}{\partial w^{2}}=\frac{\left(w_{1}+w_{2}\right)^{2}+\left(w_{1} \cot p_{1}-w_{2} \cot p_{2}\right)^{2}}{\cot p_{1}+\cot p_{2}}
$$

- If $\min \left(p_{1}, p_{2}\right)$ is constant, the derivatives are bounded by constants.

The behavior of the volume

$$
-\frac{\partial^{2} \mathcal{V}(T)}{\partial w^{2}}=\frac{\left(w_{1}+w_{2}\right)^{2}+\left(w_{1} \cot p_{1}-w_{2} \cot p_{2}\right)^{2}}{\cot p_{1}+\cot p_{2}}
$$

- If $\min \left(p_{1}, p_{2}\right)$ is constant, the derivatives are bounded by constants.
- If $\min \left(p_{1}, p_{2}\right)=x$ and $\max \left(p_{1}, p_{2}\right)$ is constant, then

$$
\frac{\partial^{2} \mathcal{V}(T)}{\partial w^{2}}=O_{x \rightarrow 0}\left(\frac{1}{x}\right) .
$$

The behavior of the volume

$$
-\frac{\partial^{2} \mathcal{V}(T)}{\partial w^{2}}=\frac{\left(w_{1}+w_{2}\right)^{2}+\left(w_{1} \cot p_{1}-w_{2} \cot p_{2}\right)^{2}}{\cot p_{1}+\cot p_{2}}
$$

- If $\min \left(p_{1}, p_{2}\right)$ is constant, the derivatives are bounded by constants.
- If $\min \left(p_{1}, p_{2}\right)=x$ and $\max \left(p_{1}, p_{2}\right)$ is constant, then

$$
\frac{\partial^{2} \mathcal{V}(T)}{\partial w^{2}}=O_{x \rightarrow 0}\left(\frac{1}{x}\right)
$$

- If $\left(p_{1}, p_{2}\right) \rightarrow(0,0) \ldots$

The behavior of the volume

$$
-\frac{\partial^{2} \mathcal{V}(T)}{\partial w^{2}}=\frac{\left(w_{1}+w_{2}\right)^{2}+\left(w_{1} \cot p_{1}-w_{2} \cot p_{2}\right)^{2}}{\cot p_{1}+\cot p_{2}}
$$

- If $\min \left(p_{1}, p_{2}\right)$ is constant, the derivatives are bounded by constants.
- If $\min \left(p_{1}, p_{2}\right)=x$ and $\max \left(p_{1}, p_{2}\right)$ is constant, then $\frac{\partial^{2} \mathcal{V}(T)}{\partial w^{2}}=O_{x \rightarrow 0}\left(\frac{1}{x}\right)$.
- If $\left(p_{1}, p_{2}\right) \rightarrow(0,0) \ldots$ possible optimal on the boundary.

(1) Background

(2) The gluing equations

(4) Volume maximization
(5) Combinatorial modifications

Strategy

What is happening?

Strategy

What is happening?

Strategy

What is happening?

Strategy

What is happening?

While (not geometric) maximize volume delete flat tetrahedra

Geometric Pachner moves

To try to preserve the geometric information.

Geometric Pachner move

Move between angle structures not modifying the tetrahedra not involved in the move.

Geometric Pachner moves

To try to preserve the geometric information.

Geometric Pachner move

Move between angle structures not modifying the tetrahedra not involved in the move.

Lemma

A 3-2 move is always geometric, a 2-3 is geometric iff the "external" angles are larger than π.

Geometric Pachner moves

To try to preserve the geometric information.

Geometric Pachner move

Move between angle structures not modifying the tetrahedra not involved in the move.

Lemma

A 3-2 move is always geometric, a 2-3 is geometric iff the "external" angles are larger than π.

Remark

3-2 moves do not preserve the volume.

Flat tetrahedra deletion

Sequence of 2-3 moves followed by a 3-2.

Flat tetrahedra deletion

Sequence of 2-3 moves followed by a 3-2.

Flat tetrahedra deletion

Sequence of 2-3 moves followed by a 3-2.

Results

Right: Number of Pachner moves required to find a complete hyperbolic structures.

Results

Right: Number of Pachner moves required to find a complete hyperbolic structures. Left: comparison of the difficult cases with SnapPy.

Results 2

Time required to compute a complete hyperbolic structure in seconds, SnapPy compared to hybrid method.

Conclusion

Starting point

- To find a complete hyperbolic structure \rightarrow solve gluing equations;
- not all triangulations admits a solution;
- there is a complete hyperbolic structure iff the hyperbolic volume is maximal.

Conclusion

Starting point

- To find a complete hyperbolic structure \rightarrow solve gluing equations;
- not all triangulations admits a solution;
- there is a complete hyperbolic structure iff the hyperbolic volume is maximal.

Method

- Maximizing the hyperbolic volume leads to flat tetrahedra;
- these can be deleted to resume the maximization.

Conclusion

Starting point

- To find a complete hyperbolic structure \rightarrow solve gluing equations;
- not all triangulations admits a solution;
- there is a complete hyperbolic structure iff the hyperbolic volume is maximal.

Method

- Maximizing the hyperbolic volume leads to flat tetrahedra;
- these can be deleted to resume the maximization.

Results

- A lot of triangulations need few moves to accept complete hyperbolic structures;
- our method alone can be costly and not succeed;
- allows to improve on random re-triangulations when mixed.

