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A brief history of knot censuses

Lord Kelvin believed: entanglement =⇒ chemical properties of elements.

Crossings year Quantity
10 1899 200 Tait, Kirkman and Little
11 1967 700 Conway
13 1983 10 thousand Dowker and Thistlethwaite
16 1998 1.5 million Hoste, Thistlethwaite and Weeks
19 2020 350 million Burton

With several mistakes on the way. . .
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Knots

Figure-eight knot1

Ambient isotopy
Continuous distortion of the ambient space.

1https://en.wikipedia.org/wiki/Figure-eight_knot_(mathematics)
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3-Manifolds and knots

Gordon-Luecke theorem (1989)
The complements of two piecewise linear knots are homeomorphic if and
only if the knots are equivalent.

→ We work with S3 \ K . It is an open, orientable, cusped 3-manifold.

Theorem (Thurston)
Knots are either satellites, torus or hyperbolic.
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Complete hyperbolic structures

Provides a hyperbolic metric on the manifold.

Mostow rigidity
The geometry is unique.

The hyperbolic volume
Great invariant linked to many theories and conjectures.
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Generalized triangulations

Triangulated 3-manifolds with self-identifications.
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O. Rouillé (Inria SAM) Computation of hyperbolic structures May 16, 2022 7 / 27



Generalized triangulations

Triangulated 3-manifolds with self-identifications.

F

E

D

G

H

A

B

C
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Pachner moves

Theorem (Pachner,1991)
Any two triangulations of a piecewise linear 3-manifold can be linked by a
sequence of Pachner moves.

2-3

3-2

A

B

E

C

D

t1

t2

t3 t4t5
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Knot complement triangulations
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All 3-manifolds are triangulable, and there exists an algorithm for knots
complements.
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Hyperbolic ideal tetrahedra
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Definition
A hyperbolic ideal tetrahedron is the convex hull of four distinct points on
∂H3.

Either described with a single complex parameter or three dihedral angles.
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Getting a hyperbolic manifold

Every point must have a neighborhood isometric to a sphere.
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Completeness around the cusp
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Theorem
The hyperbolic metric of the 3-manifold is complete if and only if the
euclidean metric on the boundary torus is complete.
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O. Rouillé (Inria SAM) Computation of hyperbolic structures May 16, 2022 12 / 27



Completeness around the cusp

B F

E

D

G

H

A

C

Theorem
The hyperbolic metric of the 3-manifold is complete if and only if the
euclidean metric on the boundary torus is complete.
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Normal curves and holonomy

Normal curve
A sequence of segments cutting the triangles only by their edges.
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Thurston gluing equations (1980)

Edge equations ∑
i

log(zi ) = 2iπ

Completeness equations

∀σ ∈ ∂M, H(σ) = 0

Complete hyperbolic structure problem
Input: triangulation τ of a knot complement.
Output: complete hyperbolic structure on τ .
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SnapPy

Uses Newton’s method to directly solve Thurston’s equations.

No guarantees on the convergence speed.
No studies of the failures cases.
No methods/heuristics to find geometrizable triangulations.
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The polytope of angle structures
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all angles are in ]0,π[;
the diahedral angles of the tetrahedra sum to π;
around each edge, the angles sum to 2π.

Angle structures can be represented in R3|τ |

Lemma (Neumann, 1992)
With τ the triangulation and A(τ) the polytope of angle structures:

dim A(τ) = |τ |+ |∂M|
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Existence of a hyperbolic metric

Theorem (Casson)
If A(τ) 6= ∅, then M admits a complete hyperbolic metric.

Theorem (Casson, Rivin, 1994)
A point p ∈ A(τ) corresponds to a complete hyperbolic metric on the
interior of M if and only if p is a critical point of the volume functional
V : A(τ)→ R.

Strategy → maximize V over A(τ).
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Leading-trailing deformations
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Volume of an angle structure

Lobachevsky function

Л(x) = −
∫ x

0
log |2 sin t| dt

Volume of an ideal tetrahedron

V(α, β, γ) = Л(α) + Л(β) + Л(γ)
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Convexity

Optimization problem
Maximize V over A(τ).
A base of A(τ) is can be easily computed.
V is the sum of the volumes of the tetrahedra.

Lemma (Rivin, 1994)
V is strictly concave on a ideal hyperbolic tetrahedron.

Let p1 and p2 the smallest angles of a tetrahedron T.
Let w a linear transformation over the angles of T, with coefficients
w1, w2 and w3 such that w1 + w2 + w3 = 0.

−∂
2V(T )
∂w2 = (w1 + w2)2 + (w1 cot p1 − w2 cot p2)2

cot p1 + cot p2

O. Rouillé (Inria SAM) Computation of hyperbolic structures May 16, 2022 20 / 27



Convexity

Optimization problem
Maximize V over A(τ).
A base of A(τ) is can be easily computed.
V is the sum of the volumes of the tetrahedra.

Lemma (Rivin, 1994)
V is strictly concave on a ideal hyperbolic tetrahedron.

Let p1 and p2 the smallest angles of a tetrahedron T.
Let w a linear transformation over the angles of T, with coefficients
w1, w2 and w3 such that w1 + w2 + w3 = 0.

−∂
2V(T )
∂w2 = (w1 + w2)2 + (w1 cot p1 − w2 cot p2)2

cot p1 + cot p2
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The behavior of the volume

−∂
2V(T )
∂w2 = (w1 + w2)2 + (w1 cot p1 − w2 cot p2)2

cot p1 + cot p2

If min(p1, p2) is constant, the derivatives are bounded by constants.
If min(p1, p2) = x and max(p1, p2) is constant, then
∂2V(T )
∂w2 = Ox→0( 1x ).

If (p1, p2)→ (0, 0). . .

possible optimal on the boundary.

p1=�

p3=�p2=�
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Strategy

What is happening?

While (not geometric)
maximize volume
delete flat tetrahedra
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Geometric Pachner moves

To try to preserve the geometric information.

Geometric Pachner move
Move between angle structures not modifying the tetrahedra not involved
in the move.

Lemma
A 3-2 move is always geometric, a 2-3 is geometric iff the “external” angles
are larger than π.

Remark
3-2 moves do not preserve the volume.
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O. Rouillé (Inria SAM) Computation of hyperbolic structures May 16, 2022 23 / 27



Geometric Pachner moves

To try to preserve the geometric information.

Geometric Pachner move
Move between angle structures not modifying the tetrahedra not involved
in the move.

Lemma
A 3-2 move is always geometric, a 2-3 is geometric iff the “external” angles
are larger than π.

Remark
3-2 moves do not preserve the volume.
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Flat tetrahedra deletion

Sequence of 2-3 moves followed by a 3-2.
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Results

Right: Number of Pachner moves required to find a complete hyperbolic
structures.

Left: comparison of the difficult cases with SnapPy.
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Results 2

Time required to compute a complete hyperbolic structure in seconds,
SnapPy compared to hybrid method.
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Conclusion

Starting point
To find a complete hyperbolic structure → solve gluing equations;
not all triangulations admits a solution;
there is a complete hyperbolic structure iff the hyperbolic volume is
maximal.

Method
Maximizing the hyperbolic volume leads to flat tetrahedra;
these can be deleted to resume the maximization.

Results
A lot of triangulations need few moves to accept complete hyperbolic
structures;
our method alone can be costly and not succeed;
allows to improve on random re-triangulations when mixed.
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