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Graphs embedded on surfaces /A Discrete
Metric

A surface is a topological space that locally looks like the
plane.

An embedding of G on a surface S is an injective map
G → S .

This graph introduces a discrete metric to the surface.
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Decompositions

A decomposition for the embedded graph, is a second graph
intersecting the first graph transversely and cuts it into a disk.

How much can we control the length of a decomposition?
Orientable canonical system of loops: a one-vertex graph with
the fixed rotation system a1b1ā1b̄1a2b2ā2b̄2 . . .

Theorem (Lazarus, Pocchiola, Vegter, Verroust ’01)

Given a graph cellularly embedded on an orientable surface of genus g ,
there exists an orientable canonical system of loops, so that each loop
crosses each edge of the graph at most 4 times (total length O(gn)).
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canonical decompositions for non-orientable
surfaces

What about non-orientable surfaces? Can I cut along the
non-orientable canonical system of loops?

Theorem (F., Hubard, de Mesmay )

Given a graph cellularly embedded on a non-orientable surface, there
exists a non-orientable canonical system of loops such that
each loop in the system crosses each edge of the graph at most in
30 points (total length O(gn)).

Previous best bound for the total length is O(g2n) (Lazarus ’14).
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Motivations

Visualisation: How to represent an embedded graph?

Why non-orientable surfaces?
they are more flexible; a graph with n edges might need O(n)
handles to be embedded while one cross-cap is enough.
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Reduction to the one-vertex case

By contracting a spanning tree, our problem reduces to the case of
one-vertex graphs.

An embedding for a one-vertex graph, is entirely described by the
cyclic ordering of the edges around the vertex, and, in the
non-orientable case, the sidedness of the curves, an embedding
scheme.
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Cross-cap drawing

Cross-cap drawings, a planar drawing in which the cross-caps are
localized.
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A different approach

Theorem (Schaefer-Štefankovič ’15)

A graph G embeddable on a non-orientable surface admits a
cross-cap drawing in which each edge enters each cross-cap at most
twice.

If we can control the diameter of this cross-cap drawing, we can
control the length of the canonical system of loops.
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Curves on a non-orientable surface

A curve is orienting if cutting along it makes the surface
orientable



The Problem Application Sketch of the proof

Sketch of the proof

The proof is by induction on the number of edges.

We build a system of short paths upon this algorithm.
When dealing with separating curves:

To avoid cascading, we make sure to deal with all the separating
loops at once.
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A nice relation

The signed reversal distance between two signed permutations is
the minimum number of reversals to go from one to the other.

Very important in computational biology, computable in
polynomial time [Hannenhalli-Pevzner ’99].

Strong similarities with crosscap drawings, which we leverage in our
proof.
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Other systems of loops and a conjecture

Conjecture [Negami ’01]

Let G1 and G2 be two graphs with at most n edges embedded on a
surface S of genus g . Is there a simultaneous embedding of both
graphs on S such that each edge of G1 crosses each edge of G2 at
most a constant number of times? (total length O(n2)?)

Best bound: O(g) crossings between each edge of G1 and G2

Thank You!
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