SHORT TOPOLOGICAL DECOMPOSITIONS OF NON-ORIENTABLE SURFACES

Niloufar FULADI Alfredo HUBARD Arnaud de MESMAY

CNRS, Université Gustave Eiffel, Paris

- A surface is a topological space that locally looks like the plane.

Graphs embedded on surfaces / A Discrete Metric

■ A surface is a topological space that locally looks like the plane.

- An embedding of G on a surface S is an injective map $G \rightarrow S$.

Graphs embedded on surfaces / A Discrete METRIC

■ A surface is a topological space that locally looks like the plane.

- An embedding of G on a surface S is an injective map $G \rightarrow S$.

- This graph introduces a discrete metric to the surface.

DECOMPOSITIONS

- A decomposition for the embedded graph, is a second graph intersecting the first graph transversely and cuts it into a disk.

DECOMPOSITIONS

- A decomposition for the embedded graph, is a second graph intersecting the first graph transversely and cuts it into a disk.

- How much can we control the length of a decomposition?

DECOMPOSITIONS

- A decomposition for the embedded graph, is a second graph intersecting the first graph transversely and cuts it into a disk.

- How much can we control the length of a decomposition?
- Orientable canonical system of loops: a one-vertex graph with the fixed rotation system $a_{1} b_{1} \overline{a_{1}} \overline{b_{1}} a_{2} b_{2} \overline{a_{2}} \overline{b_{2}} \ldots$

DECOMPOSITIONS

- A decomposition for the embedded graph, is a second graph intersecting the first graph transversely and cuts it into a disk.

- How much can we control the length of a decomposition?
- Orientable canonical system of loops: a one-vertex graph with the fixed rotation system $a_{1} b_{1} \overline{a_{1}} \overline{b_{1}} a_{2} b_{2} \overline{a_{2}} \overline{b_{2}} \ldots$
Theorem (Lazarus, Pocchiola, Vegter, Verroust '01)
Given a graph cellularly embedded on an orientable surface of genus g, there exists an orientable canonical system of loops, so that each loop crosses each edge of the graph at most 4 times (total length $O(g n)$).

CANONICAL DECOMPOSITIONS FOR NON-ORIENTABLE SURFACES

- What about non-orientable surfaces? Can I cut along the non-orientable canonical system of loops?

CANONICAL DECOMPOSITIONS FOR NON-ORIENTABLE SURFACES

■ What about non-orientable surfaces? Can I cut along the non-orientable canonical system of loops?

Theorem (F., Hubard, de Mesmay)
Given a graph cellularly embedded on a non-orientable surface, there exists a non-orientable canonical system of loops such that each loop in the system crosses each edge of the graph at most in 30 points (total length $O(g n)$).

- Previous best bound for the total length is $O\left(g^{2} n\right)$ (Lazarus '14).

Two REASONS TO DECOMPOSE A SURFACE

- Surface Parametrization

Two REASONS TO DECOMPOSE A SURFACE

- Surface Parametrization

Motivations

- Visualisation: How to represent an embedded graph?

Motivations

- Visualisation: How to represent an embedded graph?

Motivations

- Visualisation: How to represent an embedded graph?

Motivations

- Visualisation: How to represent an embedded graph?

Motivations

- Visualisation: How to represent an embedded graph?

- Why non-orientable surfaces? they are more flexible; a graph with n edges might need $O(n)$ handles to be embedded while one cross-cap is enough.

Reduction to The one-VERTEX CASE

- By contracting a spanning tree, our problem reduces to the case of one-vertex graphs.

- An embedding for a one-vertex graph, is entirely described by the cyclic ordering of the edges around the vertex, and, in the non-orientable case, the sidedness of the curves, an embedding scheme.

CROSS-CAP DRAWING

- Cross-cap drawings, a planar drawing in which the cross-caps are localized.

A DIFFERENT APPROACH

Theorem (Schaefer-ŠTEFANkOVIC̆ '15)

A graph G embeddable on a non-orientable surface admits a cross-cap drawing in which each edge enters each cross-cap at most twice.

A DIFFERENT APPROACH

Theorem (Schaefer-ŠTEfankovič '15)

A graph G embeddable on a non-orientable surface admits a cross-cap drawing in which each edge enters each cross-cap at most twice.

A DIFFERENT APPROACH

THEOREM (SchaEFER-ŠTEFANKOVIČ '15)

A graph G embeddable on a non-orientable surface admits a cross-cap drawing in which each edge enters each cross-cap at most twice.

- If we can control the diameter of this cross-cap drawing, we can control the length of the canonical system of loops.

Curves on a non-Orientable surface

- A curve is orienting if cutting along it makes the surface orientable

Sketch of the proof

- The proof is by induction on the number of edges.

Sketch of The proof

- The proof is by induction on the number of edges.
- We build a system of short paths upon this algorithm.

Sketch of the proof

- The proof is by induction on the number of edges.
- We build a system of short paths upon this algorithm.
- When dealing with separating curves:

Sketch of the proof

- The proof is by induction on the number of edges.
- We build a system of short paths upon this algorithm.
- When dealing with separating curves:

- To avoid cascading, we make sure to deal with all the separating loops at once.

A NICE RELATION

- The signed reversal distance between two signed permutations is the minimum number of reversals to go from one to the other.
- Very important in computational biology, computable in polynomial time [Hannenhalli-Pevzner '99].
- Strong similarities with crosscap drawings, which we leverage in our proof.

A NICE RELATION

- The signed reversal distance between two signed permutations is the minimum number of reversals to go from one to the other.
- Very important in computational biology, computable in polynomial time [Hannenhalli-Pevzner '99].
- Strong similarities with crosscap drawings, which we leverage in our proof.

A NICE RELATION

- The signed reversal distance between two signed permutations is the minimum number of reversals to go from one to the other.
- Very important in computational biology, computable in polynomial time [Hannenhalli-Pevzner '99].
- Strong similarities with crosscap drawings, which we leverage in our proof.

OTHER SYSTEMS OF LOOPS AND A CONJECTURE

Conjecture [Negami '01]

Let G_{1} and G_{2} be two graphs with at most n edges embedded on a surface S of genus g. Is there a simultaneous embedding of both graphs on S such that each edge of G_{1} crosses each edge of G_{2} at most a constant number of times? (total length $O\left(n^{2}\right)$?)

- Best bound: $O(g)$ crossings between each edge of G_{1} and G_{2}

OTHER SYSTEMS OF LOOPS AND A CONJECTURE

Conjecture [Negami '01]

Let G_{1} and G_{2} be two graphs with at most n edges embedded on a surface S of genus g. Is there a simultaneous embedding of both graphs on S such that each edge of G_{1} crosses each edge of G_{2} at most a constant number of times? (total length $O\left(n^{2}\right)$?)

- Best bound: $O(g)$ crossings between each edge of G_{1} and G_{2}

Thank You!

