Sketch of the proof 0000000

SHORT TOPOLOGICAL DECOMPOSITIONS OF NON-ORIENTABLE SURFACES

<u>Niloufar FULADI</u> Alfredo HUBARD Arnaud de MESMAY

CNRS, Université Gustave Eiffel, Paris

T_{HE}	Problem
000	

Graphs embedded on surfaces /A Discrete Metric

• A **surface** is a topological space that locally looks like the plane.

T_{HE}	Problem
000	

Graphs embedded on surfaces /A Discrete Metric

- A surface is a topological space that locally looks like the plane.
- An embedding of G on a surface S is an injective map $G \rightarrow S$.

T_{HE}	Problem
000	

Graphs embedded on surfaces /A Discrete Metric

- A surface is a topological space that locally looks like the plane.
- An embedding of G on a surface S is an injective map $G \rightarrow S$.

This graph introduces a discrete metric to the surface.

Application 00 Sketch of the proof 0000000

DECOMPOSITIONS

A decomposition for the embedded graph, is a second graph intersecting the first graph transversely and cuts it into a disk.

Sketch of the proof 0000000

DECOMPOSITIONS

A decomposition for the embedded graph, is a second graph intersecting the first graph transversely and cuts it into a disk.

How much can we control the **length** of a decomposition?

Sketch of the proof 0000000

DECOMPOSITIONS

A decomposition for the embedded graph, is a second graph intersecting the first graph transversely and cuts it into a disk.

- How much can we control the **length** of a decomposition?
- Orientable canonical system of loops: a one-vertex graph with the fixed rotation system $a_1b_1\bar{a_1}\bar{b_1}a_2b_2\bar{a_2}\bar{b_2}\dots$

Sketch of the proof 0000000

DECOMPOSITIONS

A decomposition for the embedded graph, is a second graph intersecting the first graph transversely and cuts it into a disk.

How much can we control the **length** of a decomposition?

• Orientable canonical system of loops: a one-vertex graph with the fixed rotation system $a_1b_1\bar{a_1}\bar{b_1}a_2b_2\bar{a_2}\bar{b_2}...$

THEOREM (LAZARUS, POCCHIOLA, VEGTER, VERROUST '01)

Given a graph cellularly embedded on an **orientable** surface of genus g, there exists an orientable canonical system of loops, so that **each** loop crosses **each** edge of the graph at most 4 times (total length O(gn)).

T_{HE}	Problem
000	

Sketch of the proof 0000000

CANONICAL DECOMPOSITIONS FOR NON-ORIENTABLE SURFACES

What about non-orientable surfaces? Can I cut along the non-orientable canonical system of loops?

T_{HE}	Problem
000	

CANONICAL DECOMPOSITIONS FOR NON-ORIENTABLE SURFACES

What about non-orientable surfaces? Can I cut along the non-orientable canonical system of loops?

THEOREM (F., HUBARD, DE MESMAY)

Given a graph cellularly embedded on a non-orientable surface, there exists a **non-orientable canonical system of loops** such that **each** loop in the system crosses **each** edge of the graph at most in 30 points (total length O(gn)).

Previous best bound for the total length is $O(g^2n)$ (Lazarus '14).

Application

Sketch of the proof 0000000

Two reasons to decompose a surface

Surface Parametrization

Application

Sketch of the proof 0000000

TWO REASONS TO DECOMPOSE A SURFACE

Surface Parametrization

Sketch of the proof 0000000

MOTIVATIONS

Application

Sketch of the proof 0000000

MOTIVATIONS

■ Visualisation: How to represent an embedded graph?

Why non-orientable surfaces? they are more flexible; a graph with n edges might need O(n) handles to be embedded while one cross-cap is enough.

Application 00 Sketch of the proof •000000

REDUCTION TO THE ONE-VERTEX CASE

 By contracting a spanning tree, our problem reduces to the case of one-vertex graphs.

An embedding for a one-vertex graph, is entirely described by the cyclic ordering of the edges around the vertex, and, in the non-orientable case, the sidedness of the curves, an embedding scheme.

Sketch of the proof 0000000

CROSS-CAP DRAWING

• Cross-cap drawings, a planar drawing in which the cross-caps are localized.

Sketch of the proof 0000000

A DIFFERENT APPROACH

THEOREM (SCHAEFER-ŠTEFANKOVIČ '15)

A graph G embeddable on a non-orientable surface admits a cross-cap drawing in which each edge enters each cross-cap at most **twice**.

Sketch of the proof 0000000

A DIFFERENT APPROACH

Theorem (Schaefer-Štefankovič '15)

A graph G embeddable on a non-orientable surface admits a cross-cap drawing in which each edge enters each cross-cap at most **twice**.

Sketch of the proof 0000000

A DIFFERENT APPROACH

Theorem (Schaefer-Štefankovič '15)

A graph G embeddable on a non-orientable surface admits a cross-cap drawing in which each edge enters each cross-cap at most **twice**.

If we can control the diameter of this cross-cap drawing, we can control the length of the canonical system of loops.

Application

Sketch of the proof 0000000

CURVES ON A NON-ORIENTABLE SURFACE

 A curve is orienting if cutting along it makes the surface orientable

Application

Sketch of the proof 0000000

Sketch of the proof

• The proof is by induction on the number of edges.

Application

Sketch of the proof 0000000

SKETCH OF THE PROOF

- The proof is by induction on the number of edges.
- We build a system of short paths upon this algorithm.

Application 00

Sketch of the proof 0000000

SKETCH OF THE PROOF

- The proof is by induction on the number of edges.
- We build a system of short paths upon this algorithm.
- When dealing with separating curves:

Application 00 Sketch of the proof 0000000

SKETCH OF THE PROOF

- The proof is by induction on the number of edges.
- We build a system of short paths upon this algorithm.
- When dealing with separating curves:

• To avoid cascading, we make sure to deal with all the separating loops at once.

A NICE RELATION

- The **signed reversal distance** between two signed permutations is the minimum number of reversals to go from one to the other.
- Very important in computational biology, computable in polynomial time [Hannenhalli-Pevzner '99].
- Strong similarities with crosscap drawings, which we leverage in our proof.

A NICE RELATION

- The **signed reversal distance** between two signed permutations is the minimum number of reversals to go from one to the other.
- Very important in computational biology, computable in polynomial time [Hannenhalli-Pevzner '99].
- Strong similarities with crosscap drawings, which we leverage in our proof.

Sketch of the proof 0000000

A NICE RELATION

- The **signed reversal distance** between two signed permutations is the minimum number of reversals to go from one to the other.
- Very important in computational biology, computable in polynomial time [Hannenhalli-Pevzner '99].
- Strong similarities with crosscap drawings, which we leverage in our proof.

OTHER SYSTEMS OF LOOPS AND A CONJECTURE

Conjecture [Negami '01]

Let G_1 and G_2 be two graphs with at most n edges embedded on a surface S of genus g. Is there a simultaneous embedding of both graphs on S such that **each** edge of G_1 crosses **each** edge of G_2 at most a **constant** number of times? (total length $O(n^2)$?)

Best bound: O(g) crossings between each edge of G_1 and G_2

OTHER SYSTEMS OF LOOPS AND A CONJECTURE

Conjecture [Negami '01]

Let G_1 and G_2 be two graphs with at most n edges embedded on a surface S of genus g. Is there a simultaneous embedding of both graphs on S such that **each** edge of G_1 crosses **each** edge of G_2 at most a **constant** number of times? (total length $O(n^2)$?)

Best bound: O(g) crossings between each edge of G_1 and G_2

Thank You!