Computing the length spectrum of combinatorial graphs on the torus

Matthijs Ebbens
Joint work with Francis Lazarus

Workshop Structures on Surfaces, CIRM, Marseille May 2, 2022

Contents

- Background
- Computing the length spectrum of graphs on the torus
- Higher genus?

■ Computing a second systole

- Computing a third systole

■ Higher genus revisited

Combinatorial surfaces

Combinatorial surfaces

Length of paths

■ Weight function $|\cdot|: E(G) \rightarrow \mathbb{R}_{\geq 0}$.

Length of paths

■ Weight function $|\cdot|: E(G) \rightarrow \mathbb{R}_{\geq 0}$.

- The length of a path is sum of the weights of its edges.

Length of paths

■ Weight function $|\cdot|: E(G) \rightarrow \mathbb{R}_{\geq 0}$.
■ The length of a path is sum of the weights of its edges.

- A cycle is a closed walk.

Length spectrum

- The length of a homotopy class is the length of the shortest cycle in that homotopy class.

Length spectrum

■ The length of a homotopy class is the length of the shortest cycle in that homotopy class.
■ The length spectrum is the ordered sequence of lengths of free homotopy classes.

Motivation

■ Wide literature on the length spectrum of hyperbolic surfaces.

Motivation

- Wide literature on the length spectrum of hyperbolic surfaces.

■ There exist non-isometric hyperbolic surfaces which have the same length spectrum [Vignéras (1980)],

Motivation

- Wide literature on the length spectrum of hyperbolic surfaces.
- There exist non-isometric hyperbolic surfaces which have the same length spectrum [Vignéras (1980)],
- but only finitely many [McKean (1972)]

Motivation

- Wide literature on the length spectrum of hyperbolic surfaces.

■ There exist non-isometric hyperbolic surfaces which have the same length spectrum [Vignéras (1980)],

- but only finitely many [McKean (1972)]
- and they are very rare [Wolpert (1979)].

Problem statement

Goal: Find an algorithm which, given a weighted graph G cellularly embedded on a surface of genus g and a positive integer k, computes the first k values of the length spectrum of G.

Results for the systole $(k=1)$

■ [Thomassen (1990)]: unweighted, $O\left(n^{3}\right)$

- [Erickson, Har-Peled (2004)]: weighted, $O\left(n^{2} \log n\right)$.
- [Cabello, Chambers (2007)]: weighted, $O\left(g^{3} n \log n\right)$.

■ [Cabello, Colin de Verdière, Lazarus (2012)]: unweighted, $O\left(g n\left|\ell_{1}\right|\right)$.

Computing the length spectrum of graphs on the torus

Theorem

The first k values of the length spectrum of a weighted graph G of complexity n cellularly embedded on the torus can be computed in time $O\left(k n^{2} \log (k n)\right)$.

Algorithm

Algorithm

Compute the shortest non-contractible cycle ℓ_{1} [Erickson, Har-Peled (2004)].

Algorithm

Algorithm

Algorithm

Algorithm

Algorithm

■ Compute the length spectrum of loops based at a vertex v using Dijkstra's shortest path algorithm with source v.

Algorithm

■ Compute the length spectrum of loops based at a vertex v using Dijkstra's shortest path algorithm with source v.
■ Repeat for the other vertices and sort.

Algorithm

- Compute the length spectrum of loops based at a vertex v using Dijkstra's shortest path algorithm with source v.
- Repeat for the other vertices and sort.

■ Note: sufficient to consider only the vertices on ℓ_{1}.

Complexity I

Lemma

The $2 k$ closest translates of a vertex v on ℓ_{1} have distance $O\left(\sqrt{k\left|\ell_{1}\right|\left|\ell_{2}\right|}\right)$ from v.

Complexity I

Lemma

The $2 k$ closest translates of a vertex v on ℓ_{1} have distance $O\left(\sqrt{k\left|\ell_{1}\right|\left|\ell_{2}\right|}\right)$ from v.

Equivalent: there are $\Omega\left(r^{2}\left|\ell_{1}\right|^{-1}\left|\ell_{2}\right|^{-1}\right)$ translates within distance r of v.

Complexity I: sketch of proof

To show: there are $\Omega\left(r^{2}\left|\ell_{1}\right|^{-1}\left|\ell_{2}\right|^{-1}\right)$ translates within distance r of v.

Complexity I: sketch of proof

To show: there are $\Omega\left(r^{2}\left|\ell_{1}\right|^{-1}\left|\ell_{2}\right|^{-1}\right)$ translates within distance r of v.
■ $d\left(O, T_{1}^{i} T_{2}^{j}(O)\right) \leq|i|\left|\ell_{1}\right|+|j|\left|\ell_{2}\right|$.

Complexity I: sketch of proof

To show: there are $\Omega\left(r^{2}\left|\ell_{1}\right|^{-1}\left|\ell_{2}\right|^{-1}\right)$ translates within distance r of v.

- $d\left(O, T_{1}^{i} T_{2}^{j}(O)\right) \leq|i|\left|\ell_{1}\right|+|j|\left|\ell_{2}\right|$.
- If $j=0$ and $|i| \leq r /\left|\ell_{1}\right|$, then $d\left(O, T_{1}^{i} T_{2}^{j}(O) \leq r\right.$.

Complexity I: sketch of proof

To show: there are $\Omega\left(r^{2}\left|\ell_{1}\right|^{-1}\left|\ell_{2}\right|^{-1}\right)$ translates within distance r of v.

- $d\left(O, T_{1}^{i} T_{2}^{j}(O)\right) \leq|i|\left|\ell_{1}\right|+|j|\left|\ell_{2}\right|$.
- If $j=0$ and $|i| \leq r /\left|\ell_{1}\right|$, then $d\left(O, T_{1}^{i} T_{2}^{j}(O) \leq r\right.$.

■ If $j=1$ and $|i| \leq\left(r-\left|\ell_{2}\right|\right) /\left|\ell_{1}\right|$, then $d\left(O, T_{1}^{i} T_{2}^{j}(O) \leq r\right.$.

Complexity I: sketch of proof

To show: there are $\Omega\left(r^{2}\left|\ell_{1}\right|^{-1}\left|\ell_{2}\right|^{-1}\right)$ translates within distance r of v.
■ $d\left(O, T_{1}^{i} T_{2}^{j}(O)\right) \leq|i|\left|\ell_{1}\right|+|j|\left|\ell_{2}\right|$.

- If $j=0$ and $|i| \leq r /\left|\ell_{1}\right|$, then $d\left(O, T_{1}^{i} T_{2}^{j}(O) \leq r\right.$.
\square If $j=1$ and $|i| \leq\left(r-\left|\ell_{2}\right|\right) /\left|\ell_{1}\right|$, then $d\left(O, T_{1}^{i} T_{2}^{j}(O) \leq r\right.$.
■ Continue until $j=\left\lfloor r /\left|\ell_{2}\right|\right\rfloor$.

Complexity II

Lemma

The number of vertices within distance $r \in \mathbb{R}_{>0}$ from a given vertex v is $O\left(n r^{2}\left|\ell_{1}\right|^{-1}\left|\ell_{2}\right|^{-1}\right)$.

Note: n is the complexity of the graph.

Complexity II: proof

Lemma

The number of vertices within distance $r \in \mathbb{R}_{>0}$ from a given vertex v is $O\left(n r^{2}\left|\ell_{1}\right|^{-1}\left|\ell_{2}\right|^{-1}\right)$.

- Claim 1: the distance between vertical lines is at least $\frac{1}{2}\left|\ell_{2}\right|$.
- Claim 2: the distance between horizontal lines is at least $\frac{1}{2}\left|\ell_{1}\right|$.

Complexity II: proof

- Claim 1: the distance between vertical lines is at least $\frac{1}{2}\left|\ell_{2}\right|$.
- Claim 2: the distance between horizontal lines is at least $\frac{1}{2}\left|\ell_{1}\right|$.

Complexity II: proof

Lemma

The number of vertices within distance $r \in \mathbb{R}_{>0}$ from a given vertex v is $O\left(n r^{2}\left|\ell_{1}\right|^{-1}\left|\ell_{2}\right|^{-1}\right)$.

Complexity II: proof

Claim 1: the distance between vertical lines is at least $\frac{1}{2}\left|\ell_{2}\right|$.

Complexity II: proof

Claim 1: the distance between vertical lines is at least $\frac{1}{2}\left|\ell_{2}\right|$.
$\square\left|\ell_{2}\right| \leq\left|\delta_{2}\right|+\frac{1}{2}\left|\ell_{1}\right|$

Complexity II: proof

Claim 1: the distance between vertical lines is at least $\frac{1}{2}\left|\ell_{2}\right|$.
■ $\left|\ell_{2}\right| \leq\left|\delta_{2}\right|+\frac{1}{2}\left|\ell_{1}\right| \leq\left|\delta_{2}\right|+\frac{1}{2}\left|\ell_{2}\right|$.

Complexity II: proof

Claim 1: the distance between vertical lines is at least $\frac{1}{2}\left|\ell_{2}\right|$.
■ $\left|\ell_{2}\right| \leq\left|\delta_{2}\right|+\frac{1}{2}\left|\ell_{1}\right| \leq\left|\delta_{2}\right|+\frac{1}{2}\left|\ell_{2}\right|$.

- $\Rightarrow\left|\delta_{2}\right| \geq \frac{1}{2}\left|\ell_{2}\right|$.

Complexity II: proof

Claim 2: the distance between horizontal lines is at least $\frac{1}{2}\left|\ell_{1}\right|$.

Complexity II: proof

Claim 2: the distance between horizontal lines is at least $\frac{1}{2}\left|\ell_{1}\right|$.

Complexity II: proof

Claim 2: the distance between horizontal lines is at least $\frac{1}{2}\left|\ell_{1}\right|$.
■ $\left|\ell_{1}\right| \leq\left|\delta_{1}\right|+\left|\ell_{22}\right|$

Complexity II: proof

Claim 2: the distance between horizontal lines is at least $\frac{1}{2}\left|\ell_{1}\right|$.

- $\left|\ell_{1}\right| \leq\left|\delta_{1}\right|+\left|\ell_{22}\right|$
- $\left|\ell_{2}\right| \leq\left|\ell_{21}\right|+\left|\delta_{1}\right|+\left|\ell_{23}\right|$

Complexity II: proof

Claim 2: the distance between horizontal lines is at least $\frac{1}{2}\left|\ell_{1}\right|$.

- $\left|\ell_{1}\right| \leq\left|\delta_{1}\right|+\left|\ell_{22}\right|$
- $\left|\ell_{2}\right| \leq\left|\ell_{21}\right|+\left|\delta_{1}\right|+\left|\ell_{23}\right|$

■ $\Rightarrow\left|\delta_{1}\right| \geq \frac{1}{2}\left|\ell_{1}\right|$.

Complexity II: proof

Claim 2: the distance between horizontal lines is at least $\frac{1}{2}\left|\ell_{1}\right|$.

Complexity II: proof

Claim 2: the distance between horizontal lines is at least $\frac{1}{2}\left|\ell_{1}\right|$.

- $\left|\ell_{1}\right| \leq\left|\delta_{1}\right|+\left|\ell_{21}\right|+\left|\ell_{23}\right|$

Complexity II: proof

Claim 2: the distance between horizontal lines is at least $\frac{1}{2}\left|\ell_{1}\right|$.
$\square\left|\ell_{1}\right| \leq\left|\delta_{1}\right|+\left|\ell_{21}\right|+\left|\ell_{23}\right|$

- $\left|\ell_{2}\right| \leq\left|\delta_{1}\right|+\left|\ell_{22}\right|$

Complexity II: proof

Claim 2: the distance between horizontal lines is at least $\frac{1}{2}\left|\ell_{1}\right|$.
$\square\left|\ell_{1}\right| \leq\left|\delta_{1}\right|+\left|\ell_{21}\right|+\left|\ell_{23}\right|$

- $\left|\ell_{2}\right| \leq\left|\delta_{1}\right|+\left|\ell_{22}\right|$
$\square \Rightarrow\left|\delta_{1}\right| \geq \frac{1}{2}\left|\ell_{1}\right|$.

Complexity II: proof

Claim 2: the distance between horizontal lines is at least $\frac{1}{2}\left|\ell_{1}\right|$.

Complexity II: proof

Claim 2: the distance between horizontal lines is at least $\frac{1}{2}\left|\ell_{1}\right|$.

- $\left|\ell_{1}\right| \leq\left|\delta_{1}\right|+\left|\ell_{22}\right|$

Complexity II: proof

Claim 2: the distance between horizontal lines is at least $\frac{1}{2}\left|\ell_{1}\right|$.

- $\left|\ell_{1}\right| \leq\left|\delta_{1}\right|+\left|\ell_{22}\right|$
- $\left|\ell_{22}\right| \leq \frac{1}{2}\left|\ell_{2}\right|$

Complexity II: proof

Claim 2: the distance between horizontal lines is at least $\frac{1}{2}\left|\ell_{1}\right|$.

- $\left|\ell_{1}\right| \leq\left|\delta_{1}\right|+\left|\ell_{22}\right|$
- $\left|\ell_{22}\right| \leq \frac{1}{2}\left|\ell_{2}\right| \leq\left|\delta_{1}\right|$

Complexity II: proof

Claim 2: the distance between horizontal lines is at least $\frac{1}{2}\left|\ell_{1}\right|$.

- $\left|\ell_{1}\right| \leq\left|\delta_{1}\right|+\left|\ell_{22}\right|$
- $\left|\ell_{22}\right| \leq \frac{1}{2}\left|\ell_{2}\right| \leq\left|\delta_{1}\right|$

■ $\Rightarrow\left|\delta_{1}\right| \geq \frac{1}{2}\left|\ell_{1}\right|$.

Complexity I \& II

Lemma

The $2 k$ closest translates of a vertex v on ℓ_{1} have distance $O\left(\sqrt{k\left|\ell_{1}\right|\left|\ell_{2}\right|}\right)$ from v.

Lemma

The number of vertices within distance $r \in \mathbb{R}_{>0}$ from a given vertex v is $O\left(n r^{2}\left|\ell_{1}\right|^{-1}\left|\ell_{2}\right|^{-1}\right)$.

Complexity I \& II

Lemma

The $2 k$ closest translates of a vertex v on ℓ_{1} have distance $O\left(\sqrt{k\left|\ell_{1}\right|\left|\ell_{2}\right|}\right)$ from v.

Lemma

The number of vertices within distance $r \in \mathbb{R}_{>0}$ from a given vertex v is $O\left(n r^{2}\left|\ell_{1}\right|^{-1}\left|\ell_{2}\right|^{-1}\right)$.

■ To find the $2 k$ closest translates, we need to search up to distance $O\left(\sqrt{k\left|\ell_{1}\right|\left|\ell_{2}\right|}\right)$, for which we need to visit $O(k n)$ vertices.

Complexity I \& II

Lemma

The $2 k$ closest translates of a vertex v on ℓ_{1} have distance $O\left(\sqrt{k\left|\ell_{1}\right|\left|\ell_{2}\right|}\right)$ from v.

Lemma

The number of vertices within distance $r \in \mathbb{R}_{>0}$ from a given vertex v is $O\left(n r^{2}\left|\ell_{1}\right|^{-1}\left|\ell_{2}\right|^{-1}\right)$.

■ To find the $2 k$ closest translates, we need to search up to distance $O\left(\sqrt{k\left|\ell_{1}\right|\left|\ell_{2}\right|}\right)$, for which we need to visit $O(k n)$ vertices.

- This takes time $O(k n \log (k n))$.

Complexity I \& II

Lemma

The $2 k$ closest translates of a vertex v on ℓ_{1} have distance $O\left(\sqrt{k\left|\ell_{1}\right|\left|\ell_{2}\right|}\right)$ from v.

Lemma

The number of vertices within distance $r \in \mathbb{R}_{>0}$ from a given vertex v is $O\left(n r^{2}\left|\ell_{1}\right|^{-1}\left|\ell_{2}\right|^{-1}\right)$.

- To find the $2 k$ closest translates, we need to search up to distance $O\left(\sqrt{k\left|\ell_{1}\right|\left|\ell_{2}\right|}\right)$, for which we need to visit $O(k n)$ vertices.
- This takes time $O(k n \log (k n))$.

■ Repeat for all $O(n)$ vertices on ℓ_{1} and sort.

Difficulties with generalizing to surfaces of genus at least 2

Lemma
The $2 k$ closest translates of a vertex v on ℓ_{1} have distance $O\left(\sqrt{k\left|\ell_{1}\right|\left|\ell_{2}\right|}\right)$ from v.

Difficulties with generalizing to surfaces of genus at least 2

Lemma

The $2 k$ closest translates of a vertex v on ℓ_{1} have distance $O\left(\sqrt{k\left|\ell_{1}\right|\left|\ell_{2}\right|}\right)$ from v.

■ It is not clear how $\ell_{1}, \ell_{2}, \ldots, \ell_{2 g}$ should be chosen now.

Difficulties with generalizing to surfaces of genus at least 2

Lemma

The $2 k$ closest translates of a vertex v on ℓ_{1} have distance $O\left(\sqrt{k\left|\ell_{1}\right|\left|\ell_{2}\right|}\right)$ from v.

■ It is not clear how $\ell_{1}, \ell_{2}, \ldots, \ell_{2 g}$ should be chosen now.

- $\pi_{1}(S)$ is no longer commutative, so keeping track of the distance between the source and translates will be more complicated.

Difficulties with generalizing to surfaces of genus at least 2

Lemma

The number of vertices within distance $r \in \mathbb{R}_{>0}$ from a given vertex v is $O\left(n r^{2}\left|\ell_{1}\right|^{-1}\left|\ell_{2}\right|^{-1}\right)$.

Difficulties with generalizing to surfaces of genus at least 2

Lemma

The number of vertices within distance $r \in \mathbb{R}_{>0}$ from a given vertex v is $O\left(n r^{2}\left|\ell_{1}\right|^{-1}\left|\ell_{2}\right|^{-1}\right)$.

- It is not clear if we can show that the distance between translates of a side is "at least $\frac{1}{2}\left|\ell_{i}\right|$ ".

Difficulties with generalizing to surfaces of genus at least 2

Lemma

The number of vertices within distance $r \in \mathbb{R}_{>0}$ from a given vertex v is $O\left(n r^{2}\left|\ell_{1}\right|^{-1}\left|\ell_{2}\right|^{-1}\right)$.

- It is not clear if we can show that the distance between translates of a side is "at least $\frac{1}{2}\left|\ell_{i}\right|$ ".
- Even if we can show something like that, we end up with a factor $2^{2 g}$.

Computing a second systole

Theorem

A second systole of a weighted graph G of complexity n cellularly embedded on a surface S of genus g can be computed in time $O\left(n^{2} \log n\right)$.

Algorithm for computing a second systole

Compute a shortest non-contractible cycle ℓ_{1} [Erickson, Har-Peled (2004)].

Algorithm for computing a second systole

If ℓ_{1} is separating:

Algorithm for computing a second systole

If ℓ_{1} is separating:

Algorithm for computing a second systole

Second systole is the shortest of:
■ the shortest essential cycle in both components [Erickson, Worah (2010)],

- ℓ_{1}^{2} : the cycle obtained by traversing ℓ_{1} twice.

Algorithm for computing a second systole

If ℓ_{1} is non-separating:

Algorithm for computing a second systole

If ℓ_{1} is non-separating:

Algorithm for computing a second systole

Second systole is the shortest of:
■ the shortest essential cycle [Erickson, Worah (2010)],

- the shortest path between corresponding vertices on the boundary components,
- ℓ_{1}^{2} : the cycle obtained by traversing ℓ_{1} twice.

Computing a third systole

Theorem

A third systole of a weighted graph G of complexity n cellularly embedded on a surface S of genus g can be computed in time $O\left(n^{2} \log n\right)$.

Algorithm for computing a third systole

Compute a shortest non-contractible cycle ℓ_{1} [Erickson, Har-Peled (2004)] and second systole ℓ_{2}.

Algorithm for computing a third systole

- Case 1: $\ell_{2}=\ell_{1}^{2}$,
- Case 2: $\ell_{2} \neq \ell_{1}^{2}, \ell_{1}$ and ℓ_{2} are separating,
- Case 3: $\ell_{2} \neq \ell_{1}^{2}, \ell_{1}$ is separating and ℓ_{2} is non-separating (or reversely),
- Case 4: $\ell_{2} \neq \ell_{1}^{2}, \ell_{1}$ and ℓ_{2} are non-separating and do not cross,
- Case 5: $\ell_{2} \neq \ell_{1}^{2}, \ell_{1}$ and ℓ_{2} are non-separating and cross.

Case 1

If $\ell_{2}=\ell_{1}^{2}$, use the algorithm for the second systole:

Case 1

If $\ell_{2}=\ell_{1}^{2}$, use the algorithm for the second systole:
If ℓ_{1} is separating, then a third systole is the shortest of:

- the shortest essential cycle in both components [Erickson, Worah (2010)],
- ℓ_{1}^{3} : the cycle obtained by traversing ℓ_{1} three times.

Case 1

If $\ell_{2}=\ell_{1}^{2}$, use the algorithm for the second systole:
If ℓ_{1} is non-separating, then a third systole is the shortest of:
■ the shortest essential cycle [Erickson, Worah (2010)],

- the shortest path between corresponding vertices on the boundary components,
- ℓ_{1}^{3} : the cycle obtained by traversing ℓ_{1} three times.

Case 2

If ℓ_{1} and ℓ_{2} are separating:

Case 2

If ℓ_{1} and ℓ_{2} are separating:

Case 2

Third systole is the shortest of:
■ the shortest essential cycle in all three components [Erickson, Worah (2010)],

- ℓ_{1}^{2} : the cycle obtained by traversing ℓ_{1} twice.

Case 3

If ℓ_{1} is separating and ℓ_{2} is non-separating (or the other way around):

Case 3

If ℓ_{1} is separating and ℓ_{2} is non-separating (or the other way around):

Case 3

Third systole is the shortest of:

- the shortest essential cycle in both components [Erickson, Worah (2010)],
- the shortest path between corresponding vertices on the boundary components,
- ℓ_{1}^{2} : the cycle obtained by traversing ℓ_{1} twice.

Case 4

If ℓ_{1} and ℓ_{2} are both non-separating and do not cross:

Case 4

If ℓ_{1} and ℓ_{2} are both non-separating and do not cross:

Case 4

If ℓ_{1} and ℓ_{2} are both non-separating and do not cross:

Case 4

If ℓ_{1} and ℓ_{2} are both non-separating and do not cross:

Case 4

If ℓ_{1} and ℓ_{2} are both non-separating and do not cross:

Case 4

If ℓ_{1} and ℓ_{2} are both non-separating and do not cross:

Case 4

If ℓ_{1} and ℓ_{2} are both non-separating and do not cross:

Case 4

Third systole is the shortest of:
■ the shortest essential cycle [Erickson, Worah (2010)],
■ the shortest path between corresponding vertices on the boundary components,

- ℓ_{1}^{2} : the cycle obtained by traversing ℓ_{1} twice.

Case 5

If ℓ_{1} and ℓ_{2} are both non-separating and cross:

Case 5

Compute a shortest cycle homotopic to $\ell_{1} \cdot \ell_{2}$ [Colin de Verdière, Erickson (2010)].

Case 5

Compute a shortest cycle homotopic to $\ell_{1} \cdot \ell_{2}$ [Colin de Verdière, Erickson (2010)].

Case 5

Third systole is the shortest of:
■ the shortest essential cycle in the right component [Erickson, Worah (2010)],

- the third shortest cycle in the left component,

■ the boundary curve,

Third systole

Third systole

Next values of the length spectrum even more cases?

Gauss circle problem

■ Question: how many integer lattice points are there in a circle of radius r centered at the origin?

Gauss circle problem

■ Question: how many integer lattice points are there in a circle of radius r centered at the origin?
■ Answer: $\sim \pi r^{2}$.

Gauss circle problem

■ Question: how many integer lattice points are there in a circle of radius r centered at the origin?
■ Answer: $\sim \pi r^{2}$.

- More general answer: $\sim \frac{\pi r^{2}}{\operatorname{area}(\mathrm{~F})}$.

Relation with torus

Lemma

The number of translates of a vertex v on ℓ_{1} within distance r of v is $\Omega\left(r^{2}\left|\ell_{1}\right|^{-1}\left|\ell_{2}\right|^{-1}\right)$.

Relation with torus

Lemma

The number of vertices within distance $r \in \mathbb{R}_{>0}$ from a given vertex v is $O\left(n r^{2}\left|\ell_{1}\right|^{-1}\left|\ell_{2}\right|^{-1}\right)$.

Hyperbolic lattice point problem

Theorem (Huber (1956))

Γ Fuchsian group such that \mathbb{H} / Γ is a closed hyperbolic surface of genus g.

$$
N\left(r, z, z_{0}\right):=\#\left\{T \in \Gamma \mid d_{\mathbb{H}}\left(z_{0}, T(z)\right) \leq r\right\}
$$

Then

$$
N\left(r, z, z_{0}\right) \sim \frac{e^{r}}{4 \pi(g-1)}
$$

Lattice point problem in graphs?

\tilde{G} infinite periodic weighted graph embedded on the universal cover of S, where $\pi_{1}(S)$ is the group of covering transformations.

$$
N\left(r, v, v_{0}\right):=\#\left\{T \in \pi_{1}(S) \mid d_{\tilde{G}}\left(v_{0}, T(v)\right) \leq r\right\}
$$

Question: is it true that

$$
N\left(r, v, v_{0}\right) \sim \frac{\operatorname{area}\left(B_{r}\left(v_{0}\right)\right)}{\operatorname{area}(F)} ?
$$

Or weaker, is it true that

$$
N\left(r, v, v_{0}\right) \sim N\left(r, v, v_{1}\right) ?
$$

