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Length spectrum

The length of a homotopy class is the length of the shortest cycle in
that homotopy class.

The length spectrum is the ordered sequence of lengths of free
homotopy classes.
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Background

Motivation

Wide literature on the length spectrum of hyperbolic surfaces.

There exist non-isometric hyperbolic surfaces which have the same
length spectrum [Vignéras (1980)],
but only finitely many [McKean (1972)]
and they are very rare [Wolpert (1979)].
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Background

Problem statement

Goal: Find an algorithm which, given a weighted graph G cellularly
embedded on a surface of genus g and a positive integer k, computes the
first k values of the length spectrum of G .
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Background

Results for the systole (k = 1)

[Thomassen (1990)]: unweighted, O(n3)
[Erickson, Har-Peled (2004)]: weighted, O(n2 log n).
[Cabello, Chambers (2007)]: weighted, O(g3n log n).
[Cabello, Colin de Verdière, Lazarus (2012)]: unweighted, O(gn|ℓ1|).
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Computing the length spectrum of graphs on the torus

Computing the length spectrum of graphs on the torus

Theorem
The first k values of the length spectrum of a weighted graph G of
complexity n cellularly embedded on the torus can be computed in time
O(kn2 log(kn)).
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Computing the length spectrum of graphs on the torus

Algorithm

Compute the shortest non-contractible cycle ℓ1 [Erickson, Har-Peled
(2004)].
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Computing the length spectrum of graphs on the torus

Algorithm

Compute the shortest non-contractible cycle ℓ1 [Erickson, Har-Peled
(2004)].

T2
T1

O
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Computing the length spectrum of graphs on the torus

Algorithm

Compute the length spectrum of loops based at a vertex v using
Dijkstra’s shortest path algorithm with source v .

Repeat for the other vertices and sort.
Note: sufficient to consider only the vertices on ℓ1.

M. Ebbens Computing the length spectrum 11 / 50



Computing the length spectrum of graphs on the torus

Algorithm

Compute the length spectrum of loops based at a vertex v using
Dijkstra’s shortest path algorithm with source v .
Repeat for the other vertices and sort.

Note: sufficient to consider only the vertices on ℓ1.

M. Ebbens Computing the length spectrum 11 / 50



Computing the length spectrum of graphs on the torus

Algorithm

Compute the length spectrum of loops based at a vertex v using
Dijkstra’s shortest path algorithm with source v .
Repeat for the other vertices and sort.
Note: sufficient to consider only the vertices on ℓ1.

M. Ebbens Computing the length spectrum 11 / 50



Computing the length spectrum of graphs on the torus

Complexity I

Lemma
The 2k closest translates of a vertex v on ℓ1 have distance O(

√
k|ℓ1||ℓ2|)

from v.

Equivalent: there are Ω(r2|ℓ1|−1|ℓ2|−1) translates within distance r of v .
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Computing the length spectrum of graphs on the torus

Complexity I: sketch of proof

To show: there are Ω(r2|ℓ1|−1|ℓ2|−1) translates within distance r of v .

d(O, T i
1T j

2(O)) ≤ |i ||ℓ1| + |j ||ℓ2|.
If j = 0 and |i | ≤ r/|ℓ1|, then d(O, T i

1T j
2(O) ≤ r .

If j = 1 and |i | ≤ (r − |ℓ2|)/|ℓ1|, then d(O, T i
1T j

2(O) ≤ r .
Continue until j = ⌊r/|ℓ2|⌋.
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Computing the length spectrum of graphs on the torus

Complexity II

Lemma
The number of vertices within distance r ∈ R>0 from a given vertex v is
O(nr2|ℓ1|−1|ℓ2|−1).

Note: n is the complexity of the graph.
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Computing the length spectrum of graphs on the torus

Complexity II: proof

Lemma
The number of vertices within distance r ∈ R>0 from a given vertex v is
O(nr2|ℓ1|−1|ℓ2|−1).

Claim 1: the distance between vertical lines is at least 1
2 |ℓ2|.

Claim 2: the distance between horizontal lines is at least 1
2 |ℓ1|.

δ2 δ1
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Computing the length spectrum of graphs on the torus

Complexity II: proof
Claim 1: the distance between vertical lines is at least 1

2 |ℓ2|.

|ℓ2| ≤ |δ2| + 1
2 |ℓ1| ≤ |δ2| + 1

2 |ℓ2|.
⇒ |δ2| ≥ 1

2 |ℓ2|.

δ2
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Computing the length spectrum of graphs on the torus

Complexity II: proof
Claim 2: the distance between horizontal lines is at least 1

2 |ℓ1|.

|ℓ1| ≤ |δ1| + |ℓ22|
|ℓ2| ≤ |ℓ21| + |δ1| + |ℓ23|
⇒ |δ1| ≥ 1

2 |ℓ1|.

δ1
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Computing the length spectrum of graphs on the torus

Complexity I & II

Lemma
The 2k closest translates of a vertex v on ℓ1 have distance O(

√
k|ℓ1||ℓ2|)

from v.

Lemma
The number of vertices within distance r ∈ R>0 from a given vertex v is
O(nr2|ℓ1|−1|ℓ2|−1).

To find the 2k closest translates, we need to search up to distance
O(

√
k|ℓ1||ℓ2|), for which we need to visit O(kn) vertices.

This takes time O(kn log(kn)).
Repeat for all O(n) vertices on ℓ1 and sort.
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Higher genus?

Difficulties with generalizing to surfaces of genus at least 2

Lemma
The 2k closest translates of a vertex v on ℓ1 have distance O(

√
k|ℓ1||ℓ2|)

from v.

It is not clear how ℓ1, ℓ2, . . . , ℓ2g should be chosen now.
π1(S) is no longer commutative, so keeping track of the distance
between the source and translates will be more complicated.
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Higher genus?

Difficulties with generalizing to surfaces of genus at least 2

Lemma
The number of vertices within distance r ∈ R>0 from a given vertex v is
O(nr2|ℓ1|−1|ℓ2|−1).

It is not clear if we can show that the distance between translates of a
side is “at least 1

2 |ℓi |”.
Even if we can show something like that, we end up with a factor 22g .
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Computing a second systole

Computing a second systole

Theorem
A second systole of a weighted graph G of complexity n cellularly
embedded on a surface S of genus g can be computed in time O(n2 log n).
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Computing a second systole

Algorithm for computing a second systole

Compute a shortest non-contractible cycle ℓ1 [Erickson, Har-Peled (2004)].
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Computing a second systole

Algorithm for computing a second systole

If ℓ1 is separating:
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Algorithm for computing a second systole

If ℓ1 is separating:
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Computing a second systole

Algorithm for computing a second systole

Second systole is the shortest of:
the shortest essential cycle in both components [Erickson, Worah
(2010)],
ℓ2

1: the cycle obtained by traversing ℓ1 twice.
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Computing a second systole

Algorithm for computing a second systole

If ℓ1 is non-separating:
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Algorithm for computing a second systole
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Computing a second systole

Algorithm for computing a second systole

Second systole is the shortest of:
the shortest essential cycle [Erickson, Worah (2010)],
the shortest path between corresponding vertices on the boundary
components,
ℓ2

1: the cycle obtained by traversing ℓ1 twice.
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Computing a third systole

Computing a third systole

Theorem
A third systole of a weighted graph G of complexity n cellularly embedded
on a surface S of genus g can be computed in time O(n2 log n).
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Computing a third systole

Algorithm for computing a third systole

Compute a shortest non-contractible cycle ℓ1 [Erickson, Har-Peled (2004)]
and second systole ℓ2.
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Computing a third systole

Algorithm for computing a third systole

Case 1: ℓ2 = ℓ2
1,

Case 2: ℓ2 ̸= ℓ2
1, ℓ1 and ℓ2 are separating,

Case 3: ℓ2 ̸= ℓ2
1, ℓ1 is separating and ℓ2 is non-separating (or

reversely),
Case 4: ℓ2 ̸= ℓ2

1, ℓ1 and ℓ2 are non-separating and do not cross,
Case 5: ℓ2 ̸= ℓ2

1, ℓ1 and ℓ2 are non-separating and cross.
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Computing a third systole

Case 1

If ℓ2 = ℓ2
1, use the algorithm for the second systole:

If ℓ1 is separating, then a third systole is the shortest of:
the shortest essential cycle in both components [Erickson, Worah
(2010)],
ℓ3

1: the cycle obtained by traversing ℓ1 three times.
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Computing a third systole

Case 1

If ℓ2 = ℓ2
1, use the algorithm for the second systole:

If ℓ1 is non-separating, then a third systole is the shortest of:
the shortest essential cycle [Erickson, Worah (2010)],
the shortest path between corresponding vertices on the boundary
components,
ℓ3

1: the cycle obtained by traversing ℓ1 three times.
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Computing a third systole

Case 2

If ℓ1 and ℓ2 are separating:
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Computing a third systole

Case 2

If ℓ1 and ℓ2 are separating:
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Computing a third systole

Case 2

Third systole is the shortest of:
the shortest essential cycle in all three components [Erickson, Worah
(2010)],
ℓ2

1: the cycle obtained by traversing ℓ1 twice.
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Computing a third systole

Case 3

If ℓ1 is separating and ℓ2 is non-separating (or the other way around):
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Case 3

If ℓ1 is separating and ℓ2 is non-separating (or the other way around):
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Computing a third systole

Case 3

Third systole is the shortest of:
the shortest essential cycle in both components [Erickson, Worah
(2010)],
the shortest path between corresponding vertices on the boundary
components,
ℓ2

1: the cycle obtained by traversing ℓ1 twice.
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Computing a third systole

Case 4

If ℓ1 and ℓ2 are both non-separating and do not cross:
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Case 4
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Computing a third systole

Case 4

Third systole is the shortest of:
the shortest essential cycle [Erickson, Worah (2010)],
the shortest path between corresponding vertices on the boundary
components,
ℓ2

1: the cycle obtained by traversing ℓ1 twice.
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Computing a third systole

Case 5

If ℓ1 and ℓ2 are both non-separating and cross:
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Computing a third systole

Case 5

Compute a shortest cycle homotopic to ℓ1 · ℓ2 [Colin de Verdière, Erickson
(2010)].
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Case 5

Compute a shortest cycle homotopic to ℓ1 · ℓ2 [Colin de Verdière, Erickson
(2010)].
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Computing a third systole

Case 5

Third systole is the shortest of:
the shortest essential cycle in the right component [Erickson, Worah
(2010)],
the third shortest cycle in the left component,
the boundary curve,
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Computing a third systole

Third systole

Next values of the length spectrum even more cases?
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Next values of the length spectrum even more cases?
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Higher genus revisited

Gauss circle problem

Question: how many integer lattice points are there in a circle of
radius r centered at the origin?

Answer: ∼ πr2.

More general answer: ∼ πr2

area(F) .
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Higher genus revisited

Relation with torus

Lemma
The number of translates of a vertex v on ℓ1 within distance r of v is
Ω(r2|ℓ1|−1|ℓ2|−1).
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Higher genus revisited

Relation with torus

Lemma
The number of vertices within distance r ∈ R>0 from a given vertex v is
O(nr2|ℓ1|−1|ℓ2|−1).
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Higher genus revisited

Hyperbolic lattice point problem

Theorem (Huber (1956))
Γ Fuchsian group such that H/Γ is a closed hyperbolic surface of genus g.

N(r , z , z0) := #{T ∈ Γ | dH(z0, T (z)) ≤ r}

Then
N(r , z , z0) ∼ er

4π(g − 1) .
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Higher genus revisited

Lattice point problem in graphs?

G̃ infinite periodic weighted graph embedded on the universal cover of S,
where π1(S) is the group of covering transformations.

N(r , v , v0) := #{T ∈ π1(S) | dG̃(v0, T (v)) ≤ r}

Question: is it true that

N(r , v , v0) ∼ area(Br (v0))
area(F ) ?

Or weaker, is it true that

N(r , v , v0) ∼ N(r , v , v1)?
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