Computing the length spectrum of combinatorial graphs on the torus

Matthijs Ebbens

Joint work with Francis Lazarus

Workshop Structures on Surfaces, CIRM, Marseille May 2, 2022

Contents

- Background
- Computing the length spectrum of graphs on the torus
- Higher genus?
- Computing a second systole
- Computing a third systole
- Higher genus revisited

Combinatorial surfaces

Combinatorial surfaces

Length of paths

• Weight function $|\cdot|: E(G) \to \mathbb{R}_{\geq 0}$.

Length of paths

- Weight function $|\cdot|: E(G) \to \mathbb{R}_{\geq 0}$.
- The length of a path is sum of the weights of its edges.

Length of paths

- Weight function $|\cdot|: E(G) \to \mathbb{R}_{\geq 0}$.
- The length of a path is sum of the weights of its edges.
- A cycle is a closed walk.

Length spectrum

 The length of a homotopy class is the length of the shortest cycle in that homotopy class.

Length spectrum

- The length of a homotopy class is the length of the shortest cycle in that homotopy class.
- The length spectrum is the ordered sequence of lengths of free homotopy classes.

• Wide literature on the length spectrum of hyperbolic surfaces.

- Wide literature on the length spectrum of hyperbolic surfaces.
- There exist non-isometric hyperbolic surfaces which have the same length spectrum [Vignéras (1980)],

- Wide literature on the length spectrum of hyperbolic surfaces.
- There exist non-isometric hyperbolic surfaces which have the same length spectrum [Vignéras (1980)],
- but only finitely many [McKean (1972)]

- Wide literature on the length spectrum of hyperbolic surfaces.
- There exist non-isometric hyperbolic surfaces which have the same length spectrum [Vignéras (1980)],
- but only finitely many [McKean (1972)]
- and they are very rare [Wolpert (1979)].

Problem statement

Goal: Find an algorithm which, given a weighted graph G cellularly embedded on a surface of genus g and a positive integer k, computes the first k values of the length spectrum of G.

Results for the systole (k = 1)

- [Thomassen (1990)]: unweighted, $O(n^3)$
- **Erickson**, Har-Peled (2004)]: weighted, $O(n^2 \log n)$.
- [Cabello, Chambers (2007)]: weighted, $O(g^3 n \log n)$.
- [Cabello, Colin de Verdière, Lazarus (2012)]: unweighted, $O(gn|\ell_1|)$.

Computing the length spectrum of graphs on the torus

Theorem

The first k values of the length spectrum of a weighted graph G of complexity n cellularly embedded on the torus can be computed in time $O(kn^2 \log(kn))$.

Compute the shortest non-contractible cycle ℓ_1 [Erickson, Har-Peled (2004)].

M. Ebbens

Computing the length spectrum

 Compute the length spectrum of loops based at a vertex v using Dijkstra's shortest path algorithm with source v.

- Compute the length spectrum of loops based at a vertex v using Dijkstra's shortest path algorithm with source v.
- Repeat for the other vertices and sort.

- Compute the length spectrum of loops based at a vertex v using Dijkstra's shortest path algorithm with source v.
- Repeat for the other vertices and sort.
- Note: sufficient to consider only the vertices on ℓ_1 .

Complexity I

Lemma

The 2k closest translates of a vertex v on ℓ_1 have distance $O(\sqrt{k|\ell_1||\ell_2|})$ from v.

Complexity I

Lemma

The 2k closest translates of a vertex v on ℓ_1 have distance $O(\sqrt{k|\ell_1||\ell_2|})$ from v.

Equivalent: there are $\Omega(r^2|\ell_1|^{-1}|\ell_2|^{-1})$ translates within distance r of v.

To show: there are $\Omega(r^2|\ell_1|^{-1}|\ell_2|^{-1})$ translates within distance r of v.

To show: there are $\Omega(r^2|\ell_1|^{-1}|\ell_2|^{-1})$ translates within distance r of v. $d(O, T_1^i T_2^j(O)) \le |i||\ell_1| + |j||\ell_2|.$

M. Ebbens

Computing the length spectrum

To show: there are $\Omega(r^2|\ell_1|^{-1}|\ell_2|^{-1})$ translates within distance r of v. $d(O, T_1^i T_2^j(O)) \le |i||\ell_1| + |j||\ell_2|.$

• If j = 0 and $|i| \le r/|\ell_1|$, then $d(O, T_1^i T_2^j(O) \le r$.

To show: there are $\Omega(r^2|\ell_1|^{-1}|\ell_2|^{-1})$ translates within distance r of v. $d(O, T_1^i T_2^j(O)) \leq |i||\ell_1| + |j||\ell_2|.$

• If j = 0 and $|i| \le r/|\ell_1|$, then $d(O, T_1^i T_2^j(O) \le r$.

• If j = 1 and $|i| \le (r - |\ell_2|)/|\ell_1|$, then $d(O, T_1^i T_2^j(O) \le r$.

To show: there are $\Omega(r^2|\ell_1|^{-1}|\ell_2|^{-1})$ translates within distance r of v. $d(O, T_1^i T_2^j(O)) < |i||\ell_1| + |j||\ell_2|.$

• If j = 0 and $|i| \le r/|\ell_1|$, then $d(O, T_1^i T_2^j(O) \le r$.

• If j = 1 and $|i| \le (r - |\ell_2|)/|\ell_1|$, then $d(O, T_1^i T_2^j(O) \le r$.

• Continue until $j = \lfloor r/|\ell_2| \rfloor$.

Complexity II

Lemma

The number of vertices within distance $r \in \mathbb{R}_{>0}$ from a given vertex v is $O(nr^2|\ell_1|^{-1}|\ell_2|^{-1})$.

Note: *n* is the complexity of the graph.

Complexity II: proof

Lemma

The number of vertices within distance $r \in \mathbb{R}_{>0}$ from a given vertex v is $O(nr^2|\ell_1|^{-1}|\ell_2|^{-1})$.

- Claim 1: the distance between vertical lines is at least $\frac{1}{2}|\ell_2|$.
- Claim 2: the distance between horizontal lines is at least $\frac{1}{2}|\ell_1|$.

Complexity II: proof

- Claim 1: the distance between vertical lines is at least $\frac{1}{2}|\ell_2|$.
- Claim 2: the distance between horizontal lines is at least $\frac{1}{2}|\ell_1|$.

Complexity II: proof

Lemma

The number of vertices within distance $r \in \mathbb{R}_{>0}$ from a given vertex v is $O(nr^2|\ell_1|^{-1}|\ell_2|^{-1})$.

M. Ebbens

Computing the length spectrum
Claim 1: the distance between vertical lines is at least $\frac{1}{2}|\ell_2|$.

M. Ebbens

Computing the length spectrum

Claim 1: the distance between vertical lines is at least $\frac{1}{2}|\ell_2|$. • $|\ell_2| \le |\delta_2| + \frac{1}{2}|\ell_1|$

M. Ebbens

Computing the length spectrum

Claim 1: the distance between vertical lines is at least $\frac{1}{2}|\ell_2|$. • $|\ell_2| \le |\delta_2| + \frac{1}{2}|\ell_1| \le |\delta_2| + \frac{1}{2}|\ell_2|$.

•
$$|\ell_2| \le |\delta_2| + \frac{1}{2}|\ell_1| \le |\delta_2| + \frac{1}{2}|\ell_2|.$$

• $\Rightarrow |\delta_2| \ge \frac{1}{2}|\ell_2|.$

Claim 2: the distance between horizontal lines is at least $\frac{1}{2}|\ell_1|$.

M. Ebbens

Computing the length spectrum

Claim 2: the distance between horizontal lines is at least $\frac{1}{2}|\ell_1|$. • $|\ell_1| \le |\delta_1| + |\ell_{22}|$

$$|\ell_1| \le |\delta_1| + |\ell_{22}| |\ell_2| \le |\ell_{21}| + |\delta_1| + |\ell_{23}|$$

Claim 2: the distance between horizontal lines is at least $\frac{1}{2}|\ell_1|$.

$$|\ell_1| \le |\delta_1| + |\ell_{22}| |\ell_2| \le |\ell_{21}| + |\delta_1| + |\ell_{23}| \Rightarrow |\delta_1| \ge \frac{1}{2}|\ell_1|.$$

M. Ebbens

Claim 2: the distance between horizontal lines is at least $\frac{1}{2}|\ell_1|$. • $|\ell_1| \le |\delta_1| + |\ell_{21}| + |\ell_{23}|$

- $|\ell_1| \le |\delta_1| + |\ell_{21}| + |\ell_{23}|$
- $|\ell_2| \le |\delta_1| + |\ell_{22}|$

- $|\ell_1| \le |\delta_1| + |\ell_{21}| + |\ell_{23}|$ $|\ell_2| \le |\delta_1| + |\ell_{22}|$
- $\bullet \Rightarrow |\delta_1| \ge \frac{1}{2}|\ell_1|.$

Claim 2: the distance between horizontal lines is at least $\frac{1}{2}|\ell_1|$. • $|\ell_1| \le |\delta_1| + |\ell_{22}|$

$$|\ell_1| \le |\delta_1| + |\ell_{22}|$$
$$|\ell_{22}| \le \frac{1}{2}|\ell_2|$$

$$|\ell_1| \le |\delta_1| + |\ell_{22}| |\ell_{22}| \le \frac{1}{2}|\ell_2| \le |\delta_1|$$

$$|\ell_1| \le |\delta_1| + |\ell_{22}|$$

$$|\ell_{22}| \le \frac{1}{2} |\ell_2| \le |\delta_1|$$

$$\Rightarrow |\delta_1| \ge \frac{1}{2} |\ell_1|.$$

Lemma

The 2k closest translates of a vertex v on ℓ_1 have distance $O(\sqrt{k|\ell_1||\ell_2|})$ from v.

Lemma

The number of vertices within distance $r \in \mathbb{R}_{>0}$ from a given vertex v is $O(nr^2|\ell_1|^{-1}|\ell_2|^{-1})$.

Lemma

The 2k closest translates of a vertex v on ℓ_1 have distance $O(\sqrt{k|\ell_1||\ell_2|})$ from v.

Lemma

The number of vertices within distance $r \in \mathbb{R}_{>0}$ from a given vertex v is $O(nr^2|\ell_1|^{-1}|\ell_2|^{-1})$.

• To find the 2k closest translates, we need to search up to distance $O(\sqrt{k|\ell_1||\ell_2|})$, for which we need to visit O(kn) vertices.

Lemma

The 2k closest translates of a vertex v on ℓ_1 have distance $O(\sqrt{k|\ell_1||\ell_2|})$ from v.

Lemma

The number of vertices within distance $r \in \mathbb{R}_{>0}$ from a given vertex v is $O(nr^2|\ell_1|^{-1}|\ell_2|^{-1})$.

- To find the 2k closest translates, we need to search up to distance $O(\sqrt{k|\ell_1||\ell_2|})$, for which we need to visit O(kn) vertices.
- This takes time $O(kn \log(kn))$.

Lemma

The 2k closest translates of a vertex v on ℓ_1 have distance $O(\sqrt{k|\ell_1||\ell_2|})$ from v.

Lemma

The number of vertices within distance $r \in \mathbb{R}_{>0}$ from a given vertex v is $O(nr^2|\ell_1|^{-1}|\ell_2|^{-1})$.

- To find the 2k closest translates, we need to search up to distance $O(\sqrt{k|\ell_1||\ell_2|})$, for which we need to visit O(kn) vertices.
- This takes time O(kn log(kn)).
- Repeat for all O(n) vertices on ℓ_1 and sort.

Lemma

The 2k closest translates of a vertex v on ℓ_1 have distance $O(\sqrt{k|\ell_1||\ell_2|})$ from v.

Lemma

The 2k closest translates of a vertex v on ℓ_1 have distance $O(\sqrt{k|\ell_1||\ell_2|})$ from v.

It is not clear how $\ell_1, \ell_2, \ldots, \ell_{2g}$ should be chosen now.

Lemma

The 2k closest translates of a vertex v on ℓ_1 have distance $O(\sqrt{k|\ell_1||\ell_2|})$ from v.

- It is not clear how $\ell_1, \ell_2, \ldots, \ell_{2g}$ should be chosen now.
- $\pi_1(S)$ is no longer commutative, so keeping track of the distance between the source and translates will be more complicated.

Lemma

The number of vertices within distance $r \in \mathbb{R}_{>0}$ from a given vertex v is $O(nr^2|\ell_1|^{-1}|\ell_2|^{-1})$.

Lemma

The number of vertices within distance $r \in \mathbb{R}_{>0}$ from a given vertex v is $O(nr^2|\ell_1|^{-1}|\ell_2|^{-1})$.

It is not clear if we can show that the distance between translates of a side is "at least ¹/₂ |l_i|".

Lemma

The number of vertices within distance $r \in \mathbb{R}_{>0}$ from a given vertex v is $O(nr^2|\ell_1|^{-1}|\ell_2|^{-1})$.

- It is not clear if we can show that the distance between translates of a side is "at least ¹/₂ |l_i|".
- Even if we can show something like that, we end up with a factor 2^{2g}.

Computing a second systole

Theorem

A second systole of a weighted graph G of complexity n cellularly embedded on a surface S of genus g can be computed in time $O(n^2 \log n)$.

Compute a shortest non-contractible cycle ℓ_1 [Erickson, Har-Peled (2004)].

If ℓ_1 is separating:

If ℓ_1 is separating:

Second systole is the shortest of:

- the shortest essential cycle in both components [Erickson, Worah (2010)],
- ℓ_1^2 : the cycle obtained by traversing ℓ_1 twice.

If ℓ_1 is non-separating:

If ℓ_1 is non-separating:

Second systole is the shortest of:

- the shortest essential cycle [Erickson, Worah (2010)],
- the shortest path between corresponding vertices on the boundary components,
- ℓ_1^2 : the cycle obtained by traversing ℓ_1 twice.

Computing a third systole

Theorem

A third systole of a weighted graph G of complexity n cellularly embedded on a surface S of genus g can be computed in time $O(n^2 \log n)$.

Algorithm for computing a third systole

Compute a shortest non-contractible cycle ℓ_1 [Erickson, Har-Peled (2004)] and second systole ℓ_2 .

Algorithm for computing a third systole

- Case 1: $\ell_2 = \ell_1^2$,
- Case 2: $\ell_2 \neq \ell_1^2$, ℓ_1 and ℓ_2 are separating,
- Case 3: $\ell_2 \neq \ell_1^2$, ℓ_1 is separating and ℓ_2 is non-separating (or reversely),
- Case 4: $\ell_2 \neq \ell_1^2$, ℓ_1 and ℓ_2 are non-separating and do not cross,
- Case 5: $\ell_2 \neq \ell_1^2$, ℓ_1 and ℓ_2 are non-separating and cross.

If $\ell_2 = \ell_1^2$, use the algorithm for the second systole:

If $\ell_2 = \ell_1^2$, use the algorithm for the second systole:

- If ℓ_1 is separating, then a third systole is the shortest of:
 - the shortest essential cycle in both components [Erickson, Worah (2010)],
 - ℓ_1^3 : the cycle obtained by traversing ℓ_1 three times.

If $\ell_2 = \ell_1^2$, use the algorithm for the second systole:

If ℓ_1 is non-separating, then a third systole is the shortest of:

- the shortest essential cycle [Erickson, Worah (2010)],
- the shortest path between corresponding vertices on the boundary components,
- ℓ_1^3 : the cycle obtained by traversing ℓ_1 three times.

If ℓ_1 and ℓ_2 are separating:

If ℓ_1 and ℓ_2 are separating:

Third systole is the shortest of:

- the shortest essential cycle in all three components [Erickson, Worah (2010)],
- ℓ_1^2 : the cycle obtained by traversing ℓ_1 twice.

If ℓ_1 is separating and ℓ_2 is non-separating (or the other way around):

If ℓ_1 is separating and ℓ_2 is non-separating (or the other way around):

Third systole is the shortest of:

- the shortest essential cycle in both components [Erickson, Worah (2010)],
- the shortest path between corresponding vertices on the boundary components,
- ℓ_1^2 : the cycle obtained by traversing ℓ_1 twice.

Third systole is the shortest of:

- the shortest essential cycle [Erickson, Worah (2010)],
- the shortest path between corresponding vertices on the boundary components,
- ℓ_1^2 : the cycle obtained by traversing ℓ_1 twice.

Compute a shortest cycle homotopic to $\ell_1 \cdot \ell_2$ [Colin de Verdière, Erickson (2010)].

Compute a shortest cycle homotopic to $\ell_1 \cdot \ell_2$ [Colin de Verdière, Erickson (2010)].

Third systole is the shortest of:

- the shortest essential cycle in the right component [Erickson, Worah (2010)],
- the third shortest cycle in the left component,
- the boundary curve,

Third systole

Third systole

Next values of the length spectrum even more cases?

Gauss circle problem

Question: how many integer lattice points are there in a circle of radius r centered at the origin?

Gauss circle problem

- Question: how many integer lattice points are there in a circle of radius r centered at the origin?
- Answer: $\sim \pi r^2$.

Gauss circle problem

- Question: how many integer lattice points are there in a circle of radius r centered at the origin?
- Answer: $\sim \pi r^2$.
- More general answer: $\sim \frac{\pi r^2}{\text{area}(\mathsf{F})}$.

Relation with torus

Lemma

The number of translates of a vertex v on ℓ_1 within distance r of v is $\Omega(r^2|\ell_1|^{-1}|\ell_2|^{-1})$.

Relation with torus

Lemma

The number of vertices within distance $r \in \mathbb{R}_{>0}$ from a given vertex v is $O(nr^2|\ell_1|^{-1}|\ell_2|^{-1})$.

Hyperbolic lattice point problem

Theorem (Huber (1956))

 Γ Fuchsian group such that \mathbb{H}/Γ is a closed hyperbolic surface of genus g.

$$\mathsf{N}(r,z,z_0) := \#\{T \in \mathsf{\Gamma} \mid d_{\mathbb{H}}(z_0,T(z)) \leq r\}$$

Then

$$N(r,z,z_0)\sim \frac{e^r}{4\pi(g-1)}.$$

Lattice point problem in graphs?

 \ddot{G} infinite periodic weighted graph embedded on the universal cover of S, where $\pi_1(S)$ is the group of covering transformations.

$$N(r, v, v_0) := \#\{T \in \pi_1(S) \mid d_{\tilde{G}}(v_0, T(v)) \le r\}$$

Question: is it true that

$$N(r, v, v_0) \sim rac{\operatorname{area}(B_r(v_0))}{\operatorname{area}(F)}?$$

Or weaker, is it true that

$$N(r, v, v_0) \sim N(r, v, v_1)?$$