Experimental analysis of Delaunay flip algorithms on genus two hyperbolic surfaces

Vincent Despré, Loïc Dubois, Benedikt Kolbe, Monique Teillaud

Gamble team, Loria, INRIA (Nancy)

1. Background

- Hyperbolic plane
- Closed oriented genus 2 hyperbolic surfaces
- Delaunay triangulations in this context

Euclidean

Hyperbolic

remember, those two segments are in fact the same edge of the triangulation

... ask for every lift of a point to be outside the circumdisk

3 representations of a single Delaunay triangulation

2. Our experiments

- Delaunay flip algorithm
- Motivations
- Practical constraints
- Experiments and results

"stretching factor" interesting parameter dependency in n is tight algorithm useful for small n only

"stretching factor" interesting parameter dependency in n is tight algorithm useful for small n only

Our contribution (g = 2, n = 1)

• Experiments using rational numbers only (thanks to a density result)

Motivation

OBJECTIVE :

Use Delaunay flips to go from "bad" to "good" fundamental domain

(hence
$$n = 1$$
)

WHAT WE DID :

We compared **red** path and **blue** path

Motivation

Dehn twists are particular isotopy classes of homeomorphisms

! Thus rational numbers are our friends !

start with an "almost valid" octagon

start with an "almost valid" octagon

(step 1/3) we construct a "rational" and "valid" octagon nearby

start with an "almost valid" octagon

(step 1/3) we construct a "rational" and "valid" octagon nearby gives octagons with small diameter only \rightarrow (step 2/3) we apply twists ...

we cut along the diagonal

Results

3. Details

- Generation of rational octagons
- Representation of triangulations (data structure)

Problem : $z_1, z_2, z_3 \in \mathbb{Q} + i\mathbb{Q} \not\Rightarrow z_0 \in \mathbb{Q}$ Solution : use their formulas but slightly modify the procedure

Solution :

(1) replace z_0 by any $\widetilde{z_0} \in \mathbb{Q}$ close to z_0

Generation of rational octagons

Representation of triangulations (data structure)

4. Further prospects

- Towards higher genus
- Open questions

Problem

rational 4g-gon G:

- opposite sides almost the same length
- total area almost $4\pi(g-1)$

2

rational 4g-gon G^\prime nearby G :

- opposite sides exactly the same length
- total area exactly $4\pi(g-1)$

<u>Problem</u>

rational 4g-gon G:

- opposite sides almost the same length
- total area almost $4\pi(g-1)$

rational 4g-gon G' nearby G:

- opposite sides exactly the same length
- total area exactly $4\pi(g-1)$

independent of genus \blacktriangleleft

"small" algebraic extension :

 $\mathbb{Q}[X]/P$ for some $P \in \mathbb{Q}[X]$ such that deg P is "small"

ex:

represent $\{Q(\sqrt{2}) \mid Q \in \mathbb{Q}[X]\}$ by $\mathbb{Q}[X]/(X^2 - 2)$

Open questions

- Higher genus.
- Generate the whole mapping class group while working with rationals.
- Conjecture $O(\Delta \cdot n^2)$ for the Delaunay flip algorithm.

Thank you !