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Next slides

1. Background
• Hyperbolic plane
• Closed oriented genus 2 hyperbolic surfaces
• Delaunay triangulations in this context
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Poincaré disk model of hyperbolic plane

Euclidean Hyperbolic
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Closed oriented genus 2 hyperbolic surfaces from octagons

Let’s build a surface from an octagon!

Experimental analysis of Delaunay flip algorithms on genus two hyperbolic surfaces 4/19



Closed oriented genus 2 hyperbolic surfaces from octagons

Experimental analysis of Delaunay flip algorithms on genus two hyperbolic surfaces 4/19



Closed oriented genus 2 hyperbolic surfaces from octagons

Experimental analysis of Delaunay flip algorithms on genus two hyperbolic surfaces 4/19



Closed oriented genus 2 hyperbolic surfaces from octagons

Experimental analysis of Delaunay flip algorithms on genus two hyperbolic surfaces 4/19



Closed oriented genus 2 hyperbolic surfaces from octagons

Experimental analysis of Delaunay flip algorithms on genus two hyperbolic surfaces 4/19



Closed oriented genus 2 hyperbolic surfaces from octagons

2π

area = 4π(g − 1)

every closed oriented g = 2
hyperbolic surface obtained this way

= 4π
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Lifts
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Delaunay triangulations in this context

For building a triangulation
we start from a "valid" octagon . . .
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Delaunay triangulations in this context

. . . and triangulate the octagon
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Delaunay triangulations in this context

remember, those two
segments

are in fact the same edge
of the triangulation
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Delaunay triangulations in this context

Delaunay is as usual : for every lift of a face . . .
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Delaunay triangulations in this context

Delaunay is as usual : for every lift of a face . . .
. . . ask for every lift of a point to be outside the circumdisk
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Delaunay triangulations in this context

Delaunay is as usual : for every lift of a face . . .
. . . ask for every lift of a point to be outside the circumdisk

bad case
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Delaunay triangulations in this context

3 representations of a single Delaunay triangulation

Experimental analysis of Delaunay flip algorithms on genus two hyperbolic surfaces 7/19



Next slides

2. Our experiments
• Delaunay flip algorithm
• Motivations
• Practical constraints
• Experiments and results
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Delaunay flip algorithm and our contribution

Delaunay flip (usual notion)

Our contribution (g = 2, n = 1)

• Experiments using rational numbers only (thanks to a density result)
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Delaunay flip algorithm and our contribution

Delaunay flip (usual notion)

finishes after O(∆6g−4 · n2) flips

nb vertices n = 1

→ Despré, Schlenker, Teillaud (SoCG’20)
∆ ' diameter of the octagon

dependency in n is tight
algorithm useful for small n only

genus g = 2

"stretching factor"
interesting parameter

Our contribution (g = 2, n = 1)
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Motivation

OBJECTIVE :
Use Delaunay flips to go from "bad"
to "good" fundamental domain

WHAT WE DID :
We compared red path and blue path

octagons

twists

triangulate then

fundamental domains

Delaunay flip

this is a walk in the mapping class group . . .

(hence n = 1)
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Motivation

Dehn twists are particular isotopy classes of homeomorphisms

cid
c c

they generate the mapping class group
isotopy classes of homeos + "composition"

Octagon

Isotopy class

Twist of octagon

Composition by a

c c

of homeos

mapping class group ←→ Delaunay flips ?

Dehn twist

[!] We explore only a subgroup of the mapping class group

id id

id id
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Practical constraints

. . .

We must match:

efficient computations

exact number type

Experiment : flips implemented with exact algebraic numbers

Result : Computations are inefficient (too slow)

(CORE::Expr)

! Thus rational numbers are our friends !

(we only need exact predicates for robustness,

but predicates involve constructions)
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Experiments

start with an "almost valid" octagon
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Experiments

∈ Q + iQ

(step 1/3) we construct a "rational" and "valid" octagon nearby

start with an "almost valid" octagon

Experimental analysis of Delaunay flip algorithms on genus two hyperbolic surfaces 12/19



Experiments

∈ Q + iQ

(step 1/3) we construct a "rational" and "valid" octagon nearby

start with an "almost valid" octagon

gives octagons with small diameter only
−→ (step 2/3) we apply twists . . .
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Experiments

a pair of opposite sides
and a diagonal

choose

Experimental analysis of Delaunay flip algorithms on genus two hyperbolic surfaces 12/19



Experiments

we cut along the diagonal
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Experiments

∈ Q + iQ

and glue the paired sides
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Experiments

etc

large ∆

: always the "same" pair
: uniformly random

power
random

Choosing paired sides
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Results

# flips

diameter

power

# flips

10 ln (diameter)

random

Triangulations . . .
→ of the same surface
→ with same unique vertex

(step 3/3) Apply the Delaunay flip algorithm
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Next slides

3. Details
• Generation of rational octagons
• Representation of triangulations (data structure)
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Generation of rational octagons

0 < arg z1 < arg z2 < arg z3 < π

hyperbolic area of octagon = 4π

Input: z1, z2, z3 such that

Output: (if exists) z0 ∈]0, 1[ such that

[ Aigon-Dupuy, Buser, et al. Math. Phys.’05 ]

z0

z1
z2z3

−z0
−z1−z2 −z3

1

i

−1

−i

all closed oriented genus 2 hyperbolic surfaces

Problem : z1, z2, z3 ∈ Q+ iQ 6⇒ z0 ∈ Q

obtained this way

Solution : use their formulas but slightly modify the procedure
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Generation of rational octagons

Solution :

z̃0

z1
z2

(1) replace z0 by any

z̃0 ∈ Q close to z0

z3

−z̃0 z0−z0
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Generation of rational octagons

z̃0

z1
z2

z̃3

z3

(2) replace z3 by the unique z̃3
on the geodesic supporting −z̃0 and z3
such that the pentagon

−z̃0 z0−z0

z̃0, z1, z2, z̃3, −z̃0 has area 2π =⇒ z̃3 ∈ Q+ iQ
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Representation of triangulations (data structure)

triangulation

β1

β2

dart

[ Damiand ]

combinatorial map . . .

[u1, u2, u3, u4] =
(u4−u2)(u3−u1)
(u4−u1)(u3−u2)

u1

u4

forget points

maintain cross-ratios

. . . and cross-ratios
u2

u3

Im[u1, u2, u3, u4] > 0
⇔

edge is Delaunay-flippable
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Next slides

4. Further prospects
• Towards higher genus
• Open questions
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Towards higher genus

Problem

rational 4g-gon G :
opposite sides almost the same length

total area almost 4π(g − 1)

rational 4g-gon G′ nearby G :
opposite sides exactly the same length

total area exactly 4π(g − 1)

?
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opposite sides almost the same length

total area almost 4π(g − 1)

rational 4g-gon G′ nearby G :
opposite sides exactly the same length

total area exactly 4π(g − 1)

?

"small" algebraic extension :

Q[X]/P for some P ∈ Q[X]

such that degP is "small"
ex:
represent {Q(

√
2) | Q ∈ Q[X]}

by Q[X]/(X2 − 2)

independent of genus
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Open questions

Open questions

• Higher genus.
• Generate the whole mapping class group while working with rationals.
• Conjecture O(∆ · n2) for the Delaunay flip algorithm.

Thank you !
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