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E. B. White, Charlotte’s Web (1952)
lllustrated by Garth Williams




HOW TO DRAW A GRAPH

By W. T. TUTTE

[Received 22 May 1962]

1. Introducsion

WE use the definitions of (11). However, in deference to some recent
attempts to unify the terminology of graph theory we replace the term
‘circuit’ by ‘polygon’, and ‘degree’ by ‘valency’.

A graph G is 3-connected (nodally 3-commected) if it is simple and
non-separable and satisfies the following condition; if G is the union of
two proper subgraphs H and K such that Hn K consists solely of two
vertices © and v, then one of H and K is a link-graph (arc-graph) with
ends % and v.

It should be noted that the union of two proper subgraphs H and K
of G can be the whole of G only if each of H and K includes at least one
edge or vertex not belonging to the other. In this paper we are concerned
mainly with nodally 3-connected graphs, but a specialization to 3-connected



Spring embedding theorem [Tutte 1963]

» Let G be a simple 3-connected planar graph, with arbitrary
DOSIitive edge weights.

» Let [ be a planar embedding of G whose outer face is a convex
nolygon.

» There is a unique embedding /- of G, equivalent to [ and with
the same outer face as [, such that every interior vertex is the
weighted average of its neighbors.

» Every face of - is convex.



Spring embedding theorem

Think of edges as springs or rubber bands.
Let the system relax to equilibrium.
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[Williams 52]

[Delgado-Friedrichs 03]



Spring embedding algorithm Tutte 1963]

» Minimize potential energy

¢ :=Zwe |e]?
e

» Solve linear system V@ = 0:
For every interior vertex u:

Z wuv(xv _xu) =0
y

Zwuv(.)/v _yu) =0
y
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13. Unsolved problems

The result of §12 raises the following questions. Can we construct
simultaneous straight representations, with intersections limited as
above, of G and G* in which the residual regions of each representation
are convex? Or such that corresponding edges are represented by

perpendicular segments ?

e

Finally we may remark that very little is known about representations

of graphs in the projective plane and higher surfaces (4).
[Tutte 63]
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Pierre Varignon

Nouvelle mécanique, ou statique, dont le projet fut donné en MDCLXXXVII (1725)




Pierre Varignon

Nouvelle mécanique, ou statique, dont le projet fut donné en MDCLXXXVII (1725)

Primal: Form diagram (“funicular polygon”)



Pierre Varignon

Nouvelle mécanique, ou statique, dont le projet fut donné en MDCLXXXVII (1725)

Primal: Form diagram (“funicular polygon”)

Dual: Force diagram (“force polygon”)



Pierre Varignon

Nouvelle mécanique, ou statique, dont le projet fut donné en MDCLXXXVII (1725)

Primal: Form diagram (“funicular polygon”)
Dual: Force diagram (“force polygon”)

Corresponding edges are perpendicular
(for this talk)



James Clerk Maxwell

On Reciprocal Figures, Frames, and Diagrams of Forces (1870)

Definition.—Two plane rectilinear figures are reciprocal when they consist
of an equal number of straight lines, so that corresponding lines in the two
figures are at right angles, and corresponding lines which meet in a point in
the one figure form a closed polygon in the other.




James Clerk Maxwell

On Reciprocal Figures, Frames, and Diagrams of Forces (1870)

Definition.—Two plane rectilinear figures are reciprocal when they consist
of an equal number of straight lines, so that corresponding lines in the two
figures are at right angles, and corresponding lines which meet in a point in
the one figure form a closed polygon in the other.




Equilibrium stress

» Fix a straight-line plane embedding I
with a convex outer face

» Assign a stress we>0 to every internal
edge e

» W IS an equilibrium stress iff every
interior vertex is the weighted average
of its neighbors:

Z wuv(xu —Xx,) =0
Zwuv(yu_yv) =0

[Maxwell 1864, 1870]




[Maxwell 1864, 1870]

Maxwell-Cremona correspondence wniterey 1952

[Crapo Whiteley 1983]

» Every equilibrium stress for I defines a
reciprocal diagram ['* and vice versa.

» Straight-line embedding dual to [

» Faces of [* certify equilibrium at vertices of [



[Maxwell 1864, 1870]

Maxwell-Cremona correspondence wniterey 1952

[Crapo Whiteley 1983]

» Every equilibrium stress for I defines a
convex polyhedral lifting ' and vice versa.

» [Tis a straight-line graph in 3-space -< J/

> [ is the orthogonal projection of [T

> [T is not coplanar

> Each interior face f lifts to a planar polygon f1 x
> Each interior edge e lifts of a convex edge ef A%

[Steinitz 1916]




[Varignon 1725]

\L,fl — [Devadoss O’Rourke 2011]



- - - [Voronoi 1908] [Brown 1980]
D e I aun ay/ VO ronol I Ift In g [Seidel 1982] [Edels;)runner Seirfvel 1985]

» For any weighted point p = ((a, b), ) in the plane, define
> Lifted point p' = (g, b, %2(a?+b?) — n)
> Dual plane p*: z = ax + by — %(a?+b?) + it

» Delaunay(P) = projection of lower convex hull of P?
> “reqular / coherent subdivision’

» Voronoi(P) = projection of upper envelope of P*
> “power / Laguerre diagram®



Maxwell-Cremona—-Delaunay correspondence

For any planar straight-line graph [ with a convex outer face,
the following are (essentially) equivalent:

» Positive equilibrium stress w for [
» Embedded reciprocal diagram ['*
» Convex polyhedral lifting [T

» Delaunay vertex weights for [



Let's add some topology!

d, l2 2, CAREFULLY, SWING-TOR(A) DOWN

3. WATER WILL KEEP FLOWING-
X AND JOIN T0 BOTIOM(B)IN A LIKE THS F%RKMNYMNUTES.
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B. Kliban, Advanced Cartooning and Other Drawings (1993)
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~The flat‘torus

» [dentity oppo@eg of any parallelogram *‘
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Geodesic embeddings

» Geodesic = projection of a line segment in the universal cover

» Geodesic embedding = projection of an infinite periodic
straight-line plane graph in the universal cover
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Geodesic embeddings

[Karp

Miller Winograd 67] [Waite 67] [Collatz 78]
[lwano Steiglitz 78] [Kosaraju Sullivan 88]
[Rao Kalath 88] [Orlin 84] [E Whittlesey 05]
[Borcea Streinu 10, 15] [Ross 11, 12, 127]
[Tanagawa 12] [Malestein Theran 13]
[Kaszanitzky Schulze Tanigawa 19]

Any geodesic embedding on the flat torus can be represented by

> Position vector py e [0,1)2 for each vertex v

> Translation vector Ty-y € Z2 for each dart u—v




[Karp Miller Winograd 67] [Waite 67] [Collatz 78]
[lwano Steiglitz 78] [Kosaraju Sullivan 88]
[Rao Kalath 88] [Orlin 84] [E Whittlesey 05]

o ° [Borcea Streinu 10, 15] [Ross 11, 12, 12]
G GOd eS I C e m bed d I n g S [Tanagawa 12] [Malestein Theran 13]

[Kaszanitzky Schulze Tanigawa 19]

Any geodesic embedding on the flat torus can be represented by

> Position vector py e [0,1)2 for each vertex v

> Translation vector Ty-y € Z2 for each dart u—v

Tu-v = (4, 1) Ty-u = (_4, —1)




[Yves Colin de Verdiére 1990]
[Delgado-Friedrichs 2004]
[Steiner Fischer 2004] [Lovasz 2004

S p ri n g e m bed d i n g th eo rem ! [Gortler Gotsman Thurston 2006]

[Hass Scott 2015]

» Let [ be any essentially simple, essentially 3-connected
embedding of a graph on any flat torus, with arbitrary positive
edge weights.

» There is an essentially unique geodesic embedding /- isotopic
to [ where every vertex is in weighted equilibrium with respect
to its neighbors. Every face of /- is convex.



[Yves Colin de Verdiere 1990]
[Delgado-Friedrichs 2004]
[Steiner Fischer 2004] [Lovasz 2004]

S p ri n g em bed d i n g th eo rem ! [Gortler Gotsman Thurston 2006]

[Hass Scott 2015]

» Let [ be any essentially simple essentially 3-connected

embeddinaaf a aranf\an any flat 1 rus, with arbitrary positive
edae wel Universal cover is simple
(property of embedding, not G)

» There is an essentially unique geodesic embedding /- isotopic
to [ where every vertex is in weighted equilibrium with respect
to its neighbors. Every face of - is convex.



[Yves Colin de Verdiere 1990]
[Delgado-Friedrichs 2004]
[Steiner Fischer 2004] [Lovasz 2004]

S p ri n g em bed d i n g th eo rem ! [Gortler Gotsman Thurston 2006]

[Hass Scott 2015]

» Let [ be any essentially simple, essentially 3-connected

embedding of a graph on amtlat toriis wit\ arhitrary nositjve
edge weights. Universal cover is 3-connected
(property of embedding, not G)

» There is an essentially unique geodesic embedding /- isotopic
to [ where every vertex is in weighted equilibrium with respect
to its neighbors. Every face of - is convex.



Spring embedding theorem!

[Yves Colin de Verdiere 1990]
[Delgado-Friedrichs 2004]

[Steiner Fischer 2004] [Lovasz 2004
[Gortler Gotsman Thurston 2006]
[Hass Scott 2015]

» Let [ be any essentially simple, essentially 3-connected

em

nedding of a graph.an anv AL tariis wit

N arbitrary positive

edge weights. Minimal combinatorial

requirements

» There is an essentially unique geodesic embedding /- isotopic

to [ where every vertex is in weighted equilibrium with respect

to its neighbors. Every face of - is convex.



[Yves Colin de Verdiere 1990]
[Delgado-Friedrichs 2004]
[Steiner Fischer 2004] [Lovasz 2004]

S p ri n g em bed d i n g th eo rem ! [Gortler Gotsman Thurston 2006]

[Hass Scott 2015]

» Let [ be any essentially simple, essentially 3-connected
embedding of a graph on any flat torus, with arbitrary positive
edge weights.

» There is an essentially unique geodesic embedding - isotopic

to " where every vedey is in weiahted equilibrium with respect

toita nd Unique up to translation s convex
No fixed vertices!




[Yves Colin de Verdiére 1990]
[Delgado-Friedrichs 2004]
[Steiner Fischer 2004] [Lovasz 2004

S p ri n g e m bed d i n g th eo rem ! [Gortler Gotsman Thurston 2006]

[Hass Scott 2015]

» Let [ be any essentially simple, essentially 3-connected
embedding of a graph on any flat torus, with arbitrary positive
edge weights.

» There is an essentially unique geodesic embedding [ - isotopic

to [ where every iartey ic in weinhted eanilibritim with ree/\ect
to its neighbors Reachable by continuously deforming the surface

= combinatorially and homologically equivalent




[Yves Colin de Verdiére 1990]
[Delgado-Friedrichs 2004]
[Steiner Fischer 2004] [Lovasz 2004

S p ri n g e m bed d i n g th eo rem ! [Gortler Gotsman Thurston 2006]

[Hass Scott 2015]

» Let [ be any essentially simple, essentially 3-connected
embedding of a graph on any flat torus, with arbitrary positive
edge weights.

» There is an essentially unique geodesic embedding /- isotopic
to [ where every vertex is in weighted equilibrium with respect
to its neighbors. Every face of /- is convex.



[Yves Colin de Verdiére 1990]

Spring embedding algorithm [Gortler Gotsman Thurston 2006]

» Minimize potential energy

¢ :=Zwe |e]?
e

» Solve linear system V@ = 0 for vertex positions py
For every vertex u:

Z O~)uv(pv —DPut Tu—w) — (09 O)
y
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Local metric properties

O«

O

Equilibrium Orthogonal

Delaunay

[Voronoi 1908] [Bobenko Springborn 07]



Equilibrium is shape-agnostic ;.. ricdions 2004

It w is an equilibrium stress for [ on any flat torus,
then w is an equilibrium stress for
the image of [ on every flat torus.




Reciprocal diagram

Geodesic embedding of [* on the same flat torus as [,
where every edge e is orthogonal to its dual edge e*.




Delaunay < reciprocal [E Lin 2020

Any vertex weights that make [ Delaunay
define a reciprocal diagram [ * and vice versa.

Delaunay | \Voronoi



Delaunay < reciprocal = equilibrium  ;,.,0.0

Every reciprocal diagram defines an equilibrium stress:

We = e*l / |e|




Delaunay < reciprocal = equilibrium  ;,.,0.0

Every reciprocal diagram defines an equilibrium stress:

We = e*l / |e|




Equilibirum = reciprocal [E Lin 2020

In general, the force diagram defined by an equilibrium stress
ies on a different flat torus

w="










Equilibirum = reciprocal [E Lin 2020

In general, the force diagram defined by an equilibrium stress
ies on a different flat torus

w="




Equilibirum = reciprocal somewhere .0

Every equilibirum stress for [ can be scaled to
a reciprocal stress for the image of [ on some flat torus.




Equilibirum = reciprocal somewhere .0

Every equilibirum stress for [ can be scaled to
a reciprocal stress for the image of [ on some flat torus.




Equilibirum = reciprocal somewhere .0

Every equilibirum stress for [ can be scaled to
a reciprocal stress for the image of [ on some flat torus.




[E Lin 2020]

Maxwell-Cremona—Delaunay correspondence

For any essentially 3-connected geodesic embedding [ on any
flat torus, the following are (essentially) equivalent:

» Positive equilibrium stress w for [

» Positive equilibrium stress w for the image of [
on every flat torus

» Reciprocal diagram for the image of [
on some (essentially unique) flat torus

» Delaunay vertex weights for the image of [
on some (essentially unique) flat torus
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Mighty Morphin Power Rangers donuts (2017)



ANNALS OF MATHEMATICS
Vol. 45, No. 2, April, 1944

ISOTOPIC DEFORMATIONS OF GEODESIC COMPLEXES ON THE
2-SPHERE AND ON THE PLANE!

By STEWART S. CAIRNS
(Received February 9, 1943)

1. The deformation theorem

Two simplicial complexes, K, and K, , are called 1somorphic if their respective
sets of vertices can be so numbered, P;and Q; (z = 1,2, - - ), that Q;, - - - Q;,,
is a cell of K, when and only when P;, - -- P;_1is a cell of Ko. We will then say
that the vertices are similarly numbered.

A complex on a euclidean 2-sphere will be referred to as geodesic if each of its
1-cells is an arc of great circle shorter than a semi-circle and each of its 2-cells is
a spherical triangle less in area than a hemisphere. Every complex throughout
this paper will be finite and will be non-singular, in the sense that no two different
cells of any one complex will have a point in common.

DEerFoRMATION THEOREM.”? Let K, and K, be a pair of isomorphic geodesic
complexes on a euclidean 2-sphere, S. Let P;and Q; (t = 1, - - -, n) be the verticeo,
similarly numbered, of Ko and Ky respectively. If and only if the isomorphism’®
between Ko and K, can be extended into an orientation-preserving self-homeomor-
phism of S, it is possible to define, for everyt (0 = t £ 1), a geodesic complex, K , ,
with vertices P;(t) i = 1, - -+, n) in such a way that (1) P;(0) = P; and P;(1) =

\ 77\ v -



Planar morphing theorem (Cairns 1943

For any two equivalent planar straight-line embeddings o and [
of the same graph G, with the same convex outer face, there is

an geodesic isotopy from o to [7.

> equivalent = same rotation system = orientably homeomorphic
> isotopy = continuous deformation through embeddings

> geodesic isotopy = continuous deformation through straight-line
embeddings = morph



? Ernst Steinitz proved a similar theorem for convex polyhedra in euclidean 3-space
[E. Steinitz and H. Rademacher, Vorlesungen tber die Theorie der Polyeder, Berlin (1934),
p. 347). If a convex polyhedron has only triangular faces, its projection from an inner
point onto a sphere, S, about the point gives a geodesic triangulation of 8. One might
deduce the present theorem from that of Steinitz by showing (if it be true) that every
geodesic triangulatiqn of S is obtainable as a central projection of a convex polyhedron.

[Cairms 44]

uber. Damit ist der wichtige Kontinuitdtssatz der konvexen Polyeder
bewiesen (bis auf den noch zu behandelnden Sonderfall der Pyramiden):

Zwer projertiv-konvexe Polyeder von gleichem Tvyp lassen sich unier
Aufrechterhaltung threr projektiven Konvexitat und thres Typus stetig in-

e:nander viberfiihren.

[Steinitz Rademacher 34]




Morphing Spring em beddingS [Steinitz Rademacher 1934]

» If [ and [ 1 are equilibrium embeddings with positive stress
vectors wo # w1, we can morph by linearly interpolating stress:

wr =twr+ (1-t)wo

» Sadly, some plane graphs have no positive equilibrium stress.

[Schonhardt 1928]

» We can similarly morph between equilibrium torus graphs!

[Eric Colin de Verdiére,
Pocchiola, Vegter 2003]



Asymmetric springs [Floater 1997, 1998, 2000]

In every convex planar embedding,
every interior vertex u is a weighted average of its neighbors.

Z)’u—w(pv _pu) =(0,0)

[Schénhardt 1928] [Delgado-Friedrichs 2003]



Asymmetric springs [Floater 1997, 1998, 2000

In every convex planar embedding,
every interior vertex u is a weighted average of its neighbors:

Z A'u—w(pv _pu) =(0,0)

The barycentric weights Au—y could be asymmetric: Ay-v # Av—u
But Tutte's proof doesn't care.

Every positive barycentric weight vector
yields a convex planar embedding!



Barycentric interpolation [Floater Gotsman 1999]

Positive barycentric weights < convex planar embeddings

Z Au—>v(pv _pu) =(0,0)

Linearly interpolating between barycentric coordinates
vields a morph through convex embeddings




Barycentric interpolation [Floater Gotsman 1999]

Positive barycentric weights < convex planar embeddings

Z Au—>v(pv _pu) =(0,0)

Linearly interpolating between barycentric coordinates
vields a morph through convex embeddings




Does this work on the torus?

Z Au—w(pv — Pu Tu—>v) — (Oa O)

» The equilibrium linear system has rank 2n-2.

» IF the system is solvable, then it has a two-dimensional family
of solutions = all translations of the same convex embedding.



Does this work on the torus?

Z Au—w(pv — Pu Tu—>v) — (Oa O)

» The equilibrium linear system has rank 2n-2.

» IF the system is solvable, then it has a two-dimensional family
of solutions = all translations of the same convex embedding.

» The system is solvable IF weights are symmetric: Ay—v = Av-u



N O, it d O eS n't . [Steiner Fischer 2004]

Z Au—w(pv — Pu Tu—>v) — (Oa O)

» The equilibrium linear system has rank 2n-2.

» Unfortunately, this system is not solvable in general. ¢



N O, it d O eS n't . [Steiner Fischer 2004]

Z Au—w(pv — DPu Tu—>v) — (Oa O)

» The equilibrium linear system has rank 2n-2.
» Unfortunately, this system is not solvable in general. ¢

» Worse, averages of realizable barycentric coordinates are not
necessarily realizable! &



Sometimes it does. IE Lin 2020]

Z Au—w(pv — Pu Tu—>v) — (O: O)

» Rewrite the equilibrium system in matrix form: Ly P = T

» Call the weight vector A morphable it every column of Ly sums
to zero and every column of T) sums to zero.



Sometimes it does. IE Lin 2020]

Z Au—w(pv — Pu Tu—>v) — (O: O)

» Rewrite the equilibrium system in matrix form: Ly P = T

» Call the weight vector A morphable it every column of Ly sums
to zero and every column of T) sums to zero.

» Easy Lemma 1: Every morphable weight vector is realizable.

» Easy Lemma 2: Averages of morphable weight vectors are
morphable.



Linear algebra FTW! [ Lin 2020]

» Equilibrium linear system: Ly P = T)

» A is morphable if every column of Ly sums to zero and every
column of Th sums to zero.

» Slightly Harder Lemma: Any barycentric weight vector for a
convex embedding [ can be scaled to a morphable weight
vector for the same embedding .

> Let tUu-v = Ay Au—v, Where a is any left null vector of L.

> Matrix-Tree Theorem (or Perron-Frobenius) implies wlog a, > 0 for all u.



Mighty morphin torus graphs E Lin 2020

» Given two geodesic embeddings o and [ 1 on the flat torus.

» Check whether [ and 1 are isotopic in O(n) time.
[Colin de Verdiére, de Mesmay 2014][Chambers E Lin Parsa 2020]

» Compute barycentric weight vectors Ag and A1 in O(n) time.
[Floater 2000]

» Scale to morphable weight vectors po and 1 in O(nw/2) time.

» For any O<t<T:
> compute intermediate morphable weights u: = po(1-t) + -t

> compute embedding It by solving equilibrium system in O(nw/?) time.
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Extensions and open problems

» We can morph between isotopic geodesic embeddings on any
surface with negative curvature via barycentric interpolation
(without scaling!) [Luo Wu Zhu 2021]

» Can we morph geodesic embeddings on the sphere?

> Coherent embeddings: Yes, via Tutte and Maxwell-Cremona!
[Richter-Gebert 1996]

> Convex embeddings: Yes(?), via edge contractions.
[Cairns 1944]

> Arbitrary embeddings? Open!
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surface with negative curvature via barycentric interpolation
(without scaling!) [Luo Wu Zhu 2021]

» Can we morph geodesic embeddings on the sphere?

> Coherent embeddings: Yes, via Tutte and Maxwell-Cremona!
[Richter-Gebert 1996]

> Convex embeddings: Yes(?), via edge contractions.
[Cairns 1944]

> Arbitrary embeddings? Open!




Thank youl!




Thank youl!




