

Jeff Erickson
University of Illinois, Urbana-Champaign
CIRM workshop "Structures on Surfaces"
May 3, 2022

Joint work with Erin Chambers, Patrick Lin, and Salman Parsa

Gasth willinns
E. B. White, Charlotte's Web (1952)

Illustrated by Garth Williams

HOW TO DRAW A GRAPH

By W. T. TUTTE

[Received 22 May 1962]

1. Introduction

We use the definitions of (11). However, in deference to some recent attempts to unify the terminology of graph theory we replace the term 'circuit' by 'polygon', and 'degree' by 'valency'.

A graph G is 3-connected (nodally 3-connected) if it is simple and non-separable and satisfies the following condition; if G is the union of two proper subgraphs H and K such that $H \cap K$ consists solely of two vertices u and v, then one of H and K is a link-graph (arc-graph) with ends u and v.

It should be noted that the union of two proper subgraphs H and K of G can be the whole of G only if each of H and K includes at least one edge or vertex not belonging to the other. In this paper we are concerned mainly with nodally 3-connected graphs, but a specialization to 3-connected

Spring embedding theorem

- Let G be a simple 3-connected planar graph, with arbitrary positive edge weights.
- Let Γ be a planar embedding of G whose outer face is a convex polygon.
- There is a unique embedding Γ = of G, equivalent to Γ and with the same outer face as Γ, such that every interior vertex is the weighted average of its neighbors.
- Every face of $\Gamma=$ is convex.

Spring embedding theorem

Think of edges as springs or rubber bands.
Let the system relax to equilibrium.

Spring embedding algorithm

- Minimize potential energy

$$
\Phi:=\sum_{e} \omega_{e} \cdot|e|^{2}
$$

- Solve linear system $\nabla \Phi=0$:

For every interior vertex u:

$$
\begin{aligned}
& \sum_{v} \omega_{u v}\left(x_{v}-x_{u}\right)=0 \\
& \sum_{v} \omega_{u v}\left(y_{v}-y_{u}\right)=0
\end{aligned}
$$

13. Unsolved problems

The result of § 12 raises the following questions. Can we construct simultaneous straight representations, with intersections limited as above, of G and G^{*} in which the residual regions of each representation are convex? Or such that corresponding edges are represented by perpendicular segments?

Finally we may remark that very little is known about representations of graphs in the projective plane and higher surfaces (4).

[Varignon 1725]

Pierre Varignon

Nouvelle mécanique, ou statique, dont le projet fut donné en MDCLXXXVII (1725)

Pierre Varignon

Nouvelle mécanique, ou statique, dont le projet fut donné en MDCLXXXVII (1725)

Primal: Form diagram ("funicular polygon")

Pierre Varignon

Nouvelle mécanique, ou statique, dont le projet fut donné en MDCLXXXVII (1725)

Primal: Form diagram ("funicular polygon")
Dual: Force diagram ("force polygon")

Pierre Varignon

Nouvelle mécanique, ou statique, dont le projet fut donné en MDCLXXXVII (1725)

Primal: Form diagram ("funicular polygon")
Dual: Force diagram ("force polygon")
Corresponding edges are perpendicular
(for this talk)

James Clerk Maxwell

On Reciprocal Figures, Frames, and Diagrams of Forces (1870)

Definition.-Two plane rectilinear figures are reciprocal when they consist of an equal number of straight lines, so that corresponding lines in the two figures are at right angles, and corresponding lines which meet in a point in the one figure form a closed polygon in the other.

James Clerk Maxwell

On Reciprocal Figures, Frames, and Diagrams of Forces (1870)

Definition.-Two plane rectilinear figures are reciprocal when they consist of an equal number of straight lines, so that corresponding lines in the two figures are at right angles, and corresponding lines which meet in a point in the one figure form a closed polygon in the other.

Equilibrium stress

- Fix a straight-line plane embedding Γ with a convex outer face
- Assign a stress $\omega_{e}>0$ to every internal edge e
- ω is an equilibrium stress iff every interior vertex is the weighted average of its neighbors:

$$
\begin{aligned}
& \sum_{v} \omega_{u v}\left(x_{u}-x_{v}\right)=0 \\
& \sum_{v} \omega_{u v}\left(y_{u}-y_{v}\right)=0
\end{aligned}
$$

Maxwell-Cremona correspondence

- Every equilibrium stress for Γ defines a reciprocal diagram Γ^{*} and vice versa.
- Straight-line embedding dual to 「

$$
\begin{gathered}
e^{\star} \perp e \\
\left|e^{\star}\right|=\omega_{e} \cdot|e|
\end{gathered}
$$

- Faces of $\Gamma \star$ certify equilibrium at vertices of Γ

Maxwell-Cremona correspondence

- Every equilibrium stress for Γ defines a convex polyhedral lifting Γ^{\dagger} and vice versa.
- Γ^{\dagger} is a straight-line graph in 3 -space
$\triangleright \Gamma$ is the orthogonal projection of Γ^{\dagger}
$\triangleright \Gamma^{\uparrow}$ is not coplanar
\triangleright Each interior face f lifts to a planar polygon $f \uparrow$
\triangleright Each interior edge e lifts of a convex edge e^{\dagger}

[Steinitz 1916]

[Varignon 1725]

Delaunay/Voronoi lifting

- For any weighted point $p=((a, b), \pi)$ in the plane, define
\triangleright Lifted point $p^{\dagger}=\left(a, b, 1 / 2\left(a^{2}+b^{2}\right)-\pi\right)$
\triangleright Dual plane $p^{*}: z=a x+b y-1 / 2\left(a^{2}+b^{2}\right)+\pi$
- Delaunay $(P)=$ projection of lower convex hull of P^{\uparrow}
- "regular / coherent subdivision"
- Voronoi $(P)=$ projection of upper envelope of P^{\star}
- "power / Laguerre diagram"

Maxwell-Cremona-Delaunay correspondence

For any planar straight-line graph Γ with a convex outer face, the following are (essentially) equivalent:

- Positive equilibrium stress ω for Γ
- Embedded reciprocal diagram 「*
- Convex polyhedral lifting Γ^{\dagger}
- Delaunay vertex weights for Γ

Let's add some topology!

B. Kliban, Advanced Cartooning and Other Drawings (1993)

The flatatorus

- Identify opposite sides of any parallelogram

The flatatorus

- Identify opposite sides of any parallelogram

The flat torus

AAA

- Identify opposite sides of any parallelogram

The flat torus

AAA

- Identify opposite sides of any parallelogram

Universal cover

- Tile the plane with translates of the parallelogram

Universal cover

- Tile the plane with translates of the parallelogram

Geodesic embeddings

- Geodesic = projection of a line segment in the universal cover
- Geodesic embedding = projection of an infinite periodic straight-line plane graph in the universal cover

Geodesic embeddings

Any geodesic embedding on the flat torus can be represented by
\triangleright Position vector $p_{v} \in[0,1)^{2}$ for each vertex v
\triangleright Translation vector $\tau_{u \rightarrow v} \in \mathbb{Z}^{2}$ for each dart $u \rightarrow v$

$$
\tau_{u \rightarrow v}=(4,1) \quad \tau_{v \rightarrow u}=(-4,-1)
$$

Geodesic embeddings

Any geodesic embedding on the flat torus can be represented by
\triangleright Position vector $p_{v} \in[0,1)^{2}$ for each vertex v
\triangleright Translation vector $\tau_{u \rightarrow v} \in \mathbb{Z}^{2}$ for each dart $u \rightarrow v$

$$
\tau_{u \rightarrow v}=(4,1) \quad \tau_{v \rightarrow u}=(-4,-1)
$$

Spring embedding theorem!

- Let Γ be any essentially simple, essentially 3-connected embedding of a graph on any flat torus, with arbitrary positive edge weights.
- There is an essentially unique geodesic embedding $\Gamma_{=}$isotopic to Γ where every vertex is in weighted equilibrium with respect to its neighbors. Every face of Γ = is convex.

Spring embedding theorem!

- Let 「 be any essentially simple essentially 3-connected embeddino forararan an flat torus, with arbitrary positive edge we Universal cover is simple (property of embedding, not G)
- There is an essentially unique geodesic embedding $\Gamma=$ isotopic to Γ where every vertex is in weighted equilibrium with respect to its neighbors. Every face of $\Gamma=$ is convex.

Spring embedding theorem!

 [Steiner Fischer 2004] [Lovász 2004]- Let 「 be any essentially simple, essentially 3-connected embedding of a graph on anvflat torus witharbitrarvnositive edge weights. Universal cover is 3-connected (property of embedding, not G)
- There is an essentially unique geodesic embedding $\Gamma=$ isotopic to Γ where every vertex is in weighted equilibrium with respect to its neighbors. Every face of $\Gamma=$ is convex.

Spring embedding theorem!

 [Steiner Fischer 2004] [Lovász 2004]- Let 「 be any essentially simple, essentially 3-connected embedding of a graph anvan fintorms with arbitrary positive
edge weights.

Minimal combinatorial requirements

- There is an essentially unique geodesic embedding $\Gamma=$ isotopic to Γ where every vertex is in weighted equilibrium with respect to its neighbors. Every face of Γ = is convex.

Spring embedding theorem!

 [Steiner Fischer 2004] [Lovász 2004]- Let 「 be any essentially simple, essentially 3-connected embedding of a graph on any flat torus, with arbitrary positive edge weights.
- There is an essentially unique geodesic embedding $\Gamma=$ isotopic to Γ where evervven ex is in weinhted equilibrium with respect
to its ne $\begin{gathered}\text { Unique up to translation } \\ \text { No fixed vertices! }\end{gathered}$
s convex.

Spring embedding theorem!

- Let 「 be any essentially simple, essentially 3-connected embedding of a graph on any flat torus, with arbitrary positive edge weights.
- There is an essentially unique geodesic embedding $\Gamma=$ isotopic to Γ where every vertex is in weiahted_eumbrium with res Nent to its neighbors. Reachable by continuously deforming the surface
= combinatorially and homologically equivalent

Spring embedding theorem!

- Let Γ be any essentially simple, essentially 3-connected embedding of a graph on any flat torus, with arbitrary positive edge weights.
- There is an essentially unique geodesic embedding $\Gamma_{=}$isotopic to Γ where every vertex is in weighted equilibrium with respect to its neighbors. Every face of Γ = is convex.

Spring embedding algorithm

- Minimize potential energy

$$
\Phi:=\sum_{e} \omega_{e} \cdot|e|^{2}
$$

- Solve linear system $\nabla \Phi=0$ for vertex positions p_{v}

For every vertex u:

$$
\sum_{v} \omega_{u v}\left(p_{v}-p_{u}+\tau_{u \rightarrow v}\right)=(0,0)
$$

Local metric properties

Equilibrium

Orthogonal

Delaunay

[Voronoi 1908] [Bobenko Springborn 07]

Equilibrium is shape-agnostic

If ω is an equilibrium stress for Γ on any flat torus,
then ω is an equilibrium stress for the image of Γ on every flat torus.

Reciprocal diagram

Geodesic embedding of $\Gamma \star$ on the same flat torus as Γ, where every edge e is orthogonal to its dual edge e^{\star}.

Delaunay \Leftrightarrow reciprocal

Any vertex weights that make Γ Delaunay define a reciprocal diagram Γ * and vice versa.

Delaunay \Leftrightarrow reciprocal \Rightarrow equilibrium

Every reciprocal diagram defines an equilibrium stress:

$$
\omega_{e}=\left|e^{*}\right| /|e|
$$

Delaunay \Leftrightarrow reciprocal \Rightarrow equilibrium

Every reciprocal diagram defines an equilibrium stress:

$$
\omega_{e}=\left|e^{*}\right| /|e|
$$

Equilibirum \neq reciprocal

In general, the force diagram defined by an equilibrium stress lies on a different flat torus

Equilibirum \neq reciprocal

In general, the force diagram defined by an equilibrium stress lies on a different flat torus

Equilibirum \Rightarrow reciprocal somewhere

Every equilibirum stress for Γ can be scaled to a reciprocal stress for the image of Γ on some flat torus.

Equilibirum \Rightarrow reciprocal somewhere

Every equilibirum stress for Γ can be scaled to a reciprocal stress for the image of Γ on some flat torus.

Equilibirum \Rightarrow reciprocal somewhere

Every equilibirum stress for Γ can be scaled to a reciprocal stress for the image of Γ on some flat torus.

Maxwell-Cremona-Delaunay correspondence

For any essentially 3-connected geodesic embedding Γ on any flat torus, the following are (essentially) equivalent:

- Positive equilibrium stress ω for Γ
- Positive equilibrium stress ω for the image of Γ on every flat torus
- Reciprocal diagram for the image of Γ on some (essentially unique) flat torus
- Delaunay vertex weights for the image of Γ on some (essentially unique) flat torus

Mighty Morphin Power Rangers donuts (2017)

ISOTOPIC DEFORMATIONS OF GEODESIC COMPLEXES ON THE 2-SPHERE AND ON THE PLANE ${ }^{1}$

By Stewart S. Cairns
(Received February 9, 1943)

1. The deformation theorem

Two simplicial complexes, K_{0} and K_{1}, are called isomorphic if their respective sets of vertices can be so numbered, P_{i} and $Q_{i}(i=1,2, \cdots)$, that $Q_{i_{0}} \cdots Q_{i_{m}}$ is a cell of K_{1} when and only when $P_{i_{0}} \cdots P_{i_{m}}$ is a cell of K_{0}. We will then say that the vertices are similarly numbered.

A complex on a euclidean 2-sphere will be referred to as geodesic if each of its 1 -cells is an arc of great circle shorter than a semi-circle and each of its 2 -cells is a spherical triangle less in area than a hemisphere. Every complex throughout this paper will be finite and will be non-singular, in the sense that no two different cells of any one complex will have a point in common.

Deformation Theorem. ${ }^{2}$ Let K_{0} and K_{1} be a pair of isomorphic geodesic complexes on a euclidean 2-sphere, $S . \quad$ Let P_{i} and $Q_{i}(i=1, \cdots, n)$ be the vertice ${ }_{0}$, similarly numbered, of K_{0} and K_{r} respectively. If and only if the isomorphism ${ }^{3}$ between K_{0} and K_{1} can be extended into an orientation-preserving self-homeomorphisnı of S, it is possible to define, for every $t(0 \leqq t \leqq 1)$, a geodesic complex, K_{t}, with vertices $P_{i}(t)(i=1, \cdots, n)$ in such a way that (1) $P_{i}(0)=P_{i}$ and $P_{i}(1)=$

Planar morphing theorem

For any two equivalent planar straight-line embeddings Γ_{0} and Γ_{1} of the same graph G, with the same convex outer face, there is an geodesic isotopy from Γ_{0} to Γ_{1}.
\triangleright equivalent $=$ same rotation system = orientably homeomorphic
\triangleright isotopy = continuous deformation through embeddings
\triangleright geodesic isotopy = continuous deformation through straight-line embeddings = morph
${ }^{2}$ Ernst Steinits proved a similar theorem for convex polyhedra in euclidean 3-space [E. Steinitz and H. Rademacher, Vorlesungen über die Theorie der Polyeder, Berlin (1934), p. 347]. If a convex polyhedron has only triangular faces, its projection from an inner point onto a sphere, S, about the point gives a geodesic triangulation of S. One might deduce the present theorem from that of Steinitz by showing (if it be true) that every geodesic triangulation of S is obtainable as a central projection of a convex polyhedron.
über. Damit ist der wichtige Kontinuitätssatz der konvexen Polyeder bewiesen (bis auf den noch zu behandelnden Sonderfall der Pyramiden):

Zwei projektiv-konvexe Polyeder von gleichem Typ lassen sich unter Aufrechterhaltung ihrer projektiven Konvexität und ihres Typus stetig ineinander überführen.

Morphing spring embeddings

- If Γ_{0} and Γ_{1} are equilibrium embeddings with positive stress vectors $\omega_{0} \neq \omega_{1}$, we can morph by linearly interpolating stress:

$$
\omega_{t}=t \cdot \omega_{1}+(1-t) \omega_{0}
$$

- Sadly, some plane graphs have no positive equilibrium stress.

- We can similarly morph between equilibrium torus graphs!
[Éric Colin de Verdière,
Pocchiola, Vegter 2003]

Asymmetric springs

In every convex planar embedding, every interior vertex u is a weighted average of its neighbors.

$$
\sum_{v} \lambda_{u \rightarrow v}\left(p_{v}-p_{u}\right)=(0,0)
$$

[Schönhardt 1928]

Asymmetric springs

In every convex planar embedding,
every interior vertex u is a weighted average of its neighbors:

$$
\sum_{v} \lambda_{u \rightarrow v}\left(p_{v}-p_{u}\right)=(0,0)
$$

The barycentric weights $\lambda_{u \rightarrow v}$ could be asymmetric: $\lambda_{u \rightarrow v} \neq \lambda_{v \rightarrow u}$

But Tutte's proof doesn't care.

Every positive barycentric weight vector yields a convex planar embedding!

Barycentric interpolation

Positive barycentric weights \Leftrightarrow convex planar embeddings

$$
\sum_{v} \lambda_{u \rightarrow v}\left(p_{v}-p_{u}\right)=(0,0)
$$

Linearly interpolating between barycentric coordinates yields a morph through convex embeddings

Barycentric interpolation

Positive barycentric weights \Leftrightarrow convex planar embeddings

$$
\sum_{v} \lambda_{u \rightarrow v}\left(p_{v}-p_{u}\right)=(0,0)
$$

Linearly interpolating between barycentric coordinates yields a morph through convex embeddings

Does this work on the torus?

$$
\sum_{v} \lambda_{u \rightarrow v}\left(p_{v}-p_{u}+\tau_{u \rightarrow v}\right)=(0,0)
$$

- The equilibrium linear system has rank $2 n-2$.
- IF the system is solvable, then it has a two-dimensional family of solutions = all translations of the same convex embedding.

Does this work on the torus?

$$
\sum_{v} \lambda_{u \rightarrow v}\left(p_{v}-p_{u}+\tau_{u \rightarrow v}\right)=(0,0)
$$

- The equilibrium linear system has rank $2 n-2$.
- IF the system is solvable, then it has a two-dimensional family of solutions = all translations of the same convex embedding.
- The system is solvable IF weights are symmetric: $\lambda_{u \rightarrow v}=\lambda_{v \rightarrow u}$

No, it doesn't.

$$
\sum_{v} \lambda_{u \rightarrow v}\left(p_{v}-p_{u}+\tau_{u \rightarrow v}\right)=(0,0)
$$

- The equilibrium linear system has rank $2 n-2$.
- Unfortunately, this system is not solvable in general.

No, it doesn't.

$$
\sum_{v} \lambda_{u \rightarrow v}\left(p_{v}-p_{u}+\tau_{u \rightarrow v}\right)=(0,0)
$$

- The equilibrium linear system has rank $2 n-2$.
- Unfortunately, this system is not solvable in general.
- Worse, averages of realizable barycentric coordinates are not necessarily realizable! 중

Sometimes it does.

$$
\sum_{v} \lambda_{u \rightarrow v}\left(p_{v}-p_{u}+\tau_{u \rightarrow v}\right)=(0,0)
$$

- Rewrite the equilibrium system in matrix form: $L_{\lambda} P=T_{\lambda}$
- Call the weight vector λ morphable if every column of L_{λ} sums to zero and every column of T_{λ} sums to zero.

Sometimes it does.

$$
\sum_{v} \lambda_{u \rightarrow v}\left(p_{v}-p_{u}+\tau_{u \rightarrow v}\right)=(0,0)
$$

- Rewrite the equilibrium system in matrix form: $L_{\lambda} P=T_{\lambda}$
- Call the weight vector λ morphable if every column of L_{λ} sums to zero and every column of T_{λ} sums to zero.
- Easy Lemma 1: Every morphable weight vector is realizable.
- Easy Lemma 2: Averages of morphable weight vectors are morphable.

Linear algebra FTW!

- Equilibrium linear system: $L_{\lambda} P=T_{\lambda}$
- λ is morphable if every column of L_{λ} sums to zero and every column of T_{λ} sums to zero.
- Slightly Harder Lemma: Any barycentric weight vector for a convex embedding Γ can be scaled to a morphable weight vector for the same embedding Γ.
\triangleright Let $\mu_{u \rightarrow v}=a_{u} \lambda_{u \rightarrow v}$, where a is any left null vector of L_{λ}.
\triangleright Matrix-Tree Theorem (or Perron-Frobenius) implies wlog $a_{u}>0$ for all u.

Mighty morphin torus graphs

- Given two geodesic embeddings Γ_{0} and Γ_{1} on the flat torus.
- Check whether Γ_{0} and Γ_{1} are isotopic in $O(n)$ time.
[Colin de Verdière, de Mesmay 2014][Chambers E Lin Parsa 2020]
- Compute barycentric weight vectors λ_{0} and λ_{1} in $O(n)$ time.
[Floater 2000]
- Scale to morphable weight vectors μ_{0} and μ_{1} in $\mathrm{O}\left(n^{\omega / 2}\right)$ time.
- For any $0<t<1$:
\triangleright compute intermediate morphable weights $\mu_{t}=\mu_{0}(1-t)+\mu_{1} \cdot t$
\triangleright compute embedding Γ_{t} by solving equilibrium system in $\mathrm{O}\left(n^{\omega / 2}\right)$ time.

Extensions and open problems

- We can morph between isotopic geodesic embeddings on any surface with negative curvature via barycentric interpolation (without scaling!)
- Can we morph geodesic embeddings on the sphere?
\triangleright Coherent embeddings: Yes, via Tutte and Maxwell-Cremona!
[Richter-Gebert 1996]
\triangleright Convex embeddings: Yes(?), via edge contractions.
[Cairns 1944]
\triangleright Arbitrary embeddings? Open!

Extensions and open problems

- We can morph between isotopic geodesic embeddings on any surface with negative curvature via barycentric interpolation (without scaling!)
- Can we morph geodesic embeddings on the sphere?
\triangleright Coherent embeddings: Yes, via Tutte and Maxwell-Cremona!
[Richter-Gebert 1996]
\triangleright Convex embeddings: Yes(?), via edge contractions.
[Cairns 1944]
- Arbitrary embeddings? Open!

Thank you!

Thank you!

