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Spring embedding theorem

‣ Let G be a simple 3-connected planar graph, with arbitrary 
positive edge weights. 

‣ Let Γ be a planar embedding of G whose outer face is a convex 
polygon. 

‣ There is a unique embedding Γ= of G, equivalent to Γ and with 
the same outer face as Γ, such that every interior vertex is the 
weighted average of its neighbors. 

‣ Every face of Γ= is convex.

[Tutte 1963]



Spring embedding theorem

Think of edges as springs or rubber bands. 
Let the system relax to equilibrium.

[Delgado-Friedrichs 03]

[Williams 52]



‣Solve linear system ∇Φ = 0: 
For every interior vertex u:

Spring embedding algorithm

‣Minimize potential energy

� :=
X

e

!e · |e|2

<latexit sha1_base64="qW/tUEJ06++RMlZvdlcyHoEyouY="></latexit>

[Tutte 1963]
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[Tutte 63]
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Corresponding edges are perpendicular 
(for this talk)



James Clerk Maxwell
254 Prof. Maxwell on Reciprocal Figures 

The five triangles A D B, E B C, G J K, I J L, H I F corre- 
spond to five points of triple concourse) a d b, e b c, g j  k, i j  l, h i f .  

The quadrilateral D E G F corresponds to the point of qua- 
druple concourse d e g f .  

The pentagon A C K L H corresponds to the meeting of the 
five lines a c k l h. 

In drawing the reciprocal of fig. 2, it is best to begin with a 
point of triple concourse. The reciprocal triangle of this point 
being drawn, determines three lines of the new figure. I f  the 
other extremities of any of the lines meeting in this point are 
points of triple concourse, we may in the same way determine 
more lines, two at a time. In drawing these lines, we have only 
to remember that those lines which in the first figure form a 
polygon, start from one point in the reciprocal figure. In this 
way we may proceed as long as we can always determine all the 
lines except two of each successive polygon. 

The case represented in 
figs. 3 and I I l .  is an in- 
stance of a pair of reci- 
procal figures fulfilling the 
conditions of possibility 
and determinateness, but 
presenting a slight diffi- 
culty in drawing by the 
foregoing rule. Each fi- 
gure has here eight points 
and eight polygons; but 
after we have drawn the 
lines s, n, o, k, r, we can- 
not proceed with the figure 
simply by drawing the last 
two lines of polygons, 
because the next polygons 
to be drawn are quadrilate- 
rals, and we have only one 
side of each given. The 
easiest way to proceed is to 
produce a b c d till they 
form a quadrilateral, then 
to draw a subsidiary figure 
similar to t l m p  q, with 
a b c d similarly situated, 
and then to reduce the 
latter figure to such a scale 
and position that a, b, c, d 
coincide in both figures. 

Fig. 3. 

~ L A 

C 

Fig. III. 

On Reciprocal Figures, Frames, and Diagrams of Forces (1870)
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Equilibrium stress

‣ Fix a straight-line plane embedding Γ 
with a convex outer face 

‣ Assign a stress ωe>0 to every internal 
edge e 

‣ ω is an equilibrium stress iff every 
interior vertex is the weighted average 
of its neighbors:
X

v

!uv(xu � xv) = 0

X

v

!uv(yu � yv) = 0

<latexit sha1_base64="m9xnZlXCcBZm2mblAxRwn6SNJvw="></latexit>

[Maxwell 1864, 1870]
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Maxwell–Cremona correspondence

‣ Every equilibrium stress for Γ defines a 
reciprocal diagram Γ* and vice versa. 

‣ Straight-line embedding dual to Γ

e*⟂e 
|e*| = ωe·|e|  

‣ Faces of Γ* certify equilibrium at vertices of Γ
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[Maxwell 1864, 1870]

[Whiteley 1982] 
[Crapo Whiteley 1983]



Maxwell–Cremona correspondence

‣ Every equilibrium stress for Γ defines a 
convex polyhedral lifting Γ↑ and vice versa. 

‣ Γ↑ is a straight-line graph in 3-space 
▹ Γ is the orthogonal projection of Γ↑ 

▹  Γ↑ is not coplanar 
▹ Each interior face f lifts to a planar polygon f↑ 

▹ Each interior edge e lifts of a convex edge e↑

[Steinitz 1916]

[Maxwell 1864, 1870]

[Whiteley 1982] 
[Crapo Whiteley 1983]



[Devadoss O’Rourke 2011]
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[Varignon 1725]



Delaunay/Voronoi lifting

‣ For any weighted point p = ((a, b), π) in the plane, define 
▹ Lifted point p↑ = (a, b, ½(a²+b²) – π) 
▹ Dual plane p*:  z = ax + by – ½(a²+b²) + π 

‣ Delaunay(P) = projection of lower convex hull of P↑ 
▹ “regular / coherent subdivision” 

‣ Voronoi(P) = projection of upper envelope of P* 
▹ “power / Laguerre diagram”

[Voronoï 1908] [Brown 1980] 
[Seidel 1982] [Edelsbrunner Seidel 1985]



Maxwell–Cremona–Delaunay correspondence

For any planar straight-line graph Γ with a convex outer face, 
the following are (essentially) equivalent: 

‣ Positive equilibrium stress ω for Γ 

‣ Embedded reciprocal diagram Γ* 

‣ Convex polyhedral lifting Γ↑ 

‣ Delaunay vertex weights for Γ



Let’s add some topology!

B. Kliban, Advanced Cartooning and Other Drawings (1993)



The flat torus

‣ Identify opposite sides of any parallelogram
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The flat torus
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‣ Tile the plane with translates of the parallelogram

Universal cover



‣ Tile the plane with translates of the parallelogram

Universal cover



Geodesic embeddings

‣ Geodesic = projection of a line segment in the universal cover 

‣ Geodesic embedding = projection of an infinite periodic 
straight-line plane graph in the universal cover





Geodesic embeddings

Any geodesic embedding on the flat torus can be represented by  

▹ Position vector pv ∈ [0,1)2 for each vertex v 

▹ Translation vector τu→v ∈ ℤ2 for each dart u→v 

τu→v = (4, 1) τv→u = (–4, –1)

u

v

[Karp Miller Winograd 67] [Waite 67] [Collatz 78] 
[Iwano Steiglitz 78] [Kosaraju Sullivan 88] 

[Rao Kalath 88] [Orlin 84] [E Whittlesey 05] 
[Borcea Streinu 10, 15] [Ross 11, 12, 12’] 

[Tanagawa 12] [Malestein Theran 13] 
[Kaszanitzky Schulze Tanigawa 19]
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Spring embedding theorem!

‣ Let Γ be any essentially simple, essentially 3-connected 
embedding of a graph on any flat torus, with arbitrary positive 
edge weights. 

‣ There is an essentially unique geodesic embedding Γ= isotopic 
to Γ where every vertex is in weighted equilibrium with respect 
to its neighbors.  Every face of Γ= is convex.

[Yves Colin de Verdière 1990] 
[Delgado-Friedrichs 2004] 

[Steiner Fischer 2004] [Lovász 2004] 
[Gortler Gotsman Thurston 2006] 

[Hass Scott 2015]
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essentially simple

Universal cover is simple 
(property of embedding, not G)
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essentially simple, essentially 3-connected

Minimal combinatorial 
requirements
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essentially unique

Unique up to translation 
No fixed vertices!
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isotopic

Reachable by continuously deforming the surface 
= combinatorially and homologically equivalent



Spring embedding theorem!
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‣Solve linear system ∇Φ = 0 for vertex positions pv 
For every vertex u:

Spring embedding algorithm

‣Minimize potential energy

� :=
X

e

!e · |e|2
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[Yves Colin de Verdière 1990] 
[Gortler Gotsman Thurston 2006]



[Delgado-Friedrichs 2004]



Local metric properties

Delaunay

OrthogonalEquilibrium

[Voronoi 1908] [Bobenko Springborn 07]



Equilibrium is shape-agnostic

If ω is an equilibrium stress for Γ on any flat torus, 
then ω is an equilibrium stress for 
the image of Γ on every flat torus.

[Delgado-Friedrichs 2004]



Reciprocal diagram

Geodesic embedding of Γ* on the same flat torus as Γ, 
where every edge e is orthogonal to its dual edge e*.



Delaunay ⇔ reciprocal

Any vertex weights that make Γ Delaunay 
define a reciprocal diagram Γ* and vice versa.

Delaunay Voronoi

0
0

0
0

0
0

0

[E Lin 2020]



Delaunay ⇔ reciprocal ⇒ equilibrium

Every reciprocal diagram defines an equilibrium stress: 

ωe = |e*| / |e|

[E Lin2020]



Delaunay ⇔ reciprocal ⇒ equilibrium

Every reciprocal diagram defines an equilibrium stress: 

ωe = |e*| / |e|

9/7

1/7
4/7

[E Lin2020]



In general, the force diagram defined by an equilibrium stress 
lies on a different flat torus

Equilibirum ⇒ reciprocal/

ω ≡ ½

[E Lin 2020]
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Every equilibirum stress for Γ can be scaled to 
a reciprocal stress for the image of Γ on some flat torus.

Equilibirum ⇒ reciprocal somewhere

ω ≡ 1

[E Lin 2020]

ω ≡ 1/√3



Maxwell–Cremona–Delaunay correspondence

For any essentially 3-connected geodesic embedding Γ on any 
flat torus, the following are (essentially) equivalent: 

‣ Positive equilibrium stress ω for Γ 

‣ Positive equilibrium stress ω for the image of Γ 
on every flat torus 

‣ Reciprocal diagram for the image of Γ 
on some (essentially unique) flat torus 

‣ Delaunay vertex weights for the image of Γ 
on some (essentially unique) flat torus

[E Lin 2020]



Mighty Morphin Power Rangers donuts (2017)





Planar morphing theorem

For any two equivalent planar straight-line embeddings Γ0 and Γ1 
of the same graph G, with the same convex outer face, there is 
an geodesic isotopy from Γ0 to Γ1. 

▹ equivalent = same rotation system = orientably homeomorphic 

▹ isotopy = continuous deformation through embeddings 

▹ geodesic isotopy = continuous deformation through straight-line 
embeddings = morph

[Cairns 1943]



[Cairms 44]

[Steinitz Rademacher 34]



Morphing spring embeddings

‣ If Γ0 and Γ1 are equilibrium embeddings with positive stress 
vectors ω0 ≠ ω1, we can morph by linearly interpolating stress: 

ωt = t·ω1 + (1–t)ω0 

‣ Sadly, some plane graphs have no positive equilibrium stress.

[Steinitz Rademacher 1934]

[Schönhardt 1928]

[Éric Colin de Verdière, 
       Pocchiola, Vegter 2003]

‣We can similarly morph between equilibrium torus graphs!



Asymmetric springs 

In every convex planar embedding, 
every interior vertex u is a weighted average of its neighbors.

[Floater 1997, 1998, 2000]

[Delgado-Friedrichs 2003][Schönhardt 1928]



Asymmetric springs 

In every convex planar embedding, 
every interior vertex u is a weighted average of its neighbors:

[Floater 1997, 1998, 2000]

The barycentric weights λu→v could be asymmetric: λu→v ≠ λv→u 

But Tutte’s proof doesn’t care. 

Every positive barycentric weight vector 
yields a convex planar embedding!



Barycentric interpolation

Positive barycentric weights ⇔ convex planar embeddings

Linearly interpolating between barycentric coordinates 
yields a morph through convex embeddings

[Floater Gotsman 1999]



Barycentric interpolation

Positive barycentric weights ⇔ convex planar embeddings

Linearly interpolating between barycentric coordinates 
yields a morph through convex embeddings

[Floater Gotsman 1999]



Does this work on the torus?

‣ The equilibrium linear system has rank 2n–2.

‣ IF the system is solvable, then it has a two-dimensional family 
of solutions = all translations of the same convex embedding.



Does this work on the torus?

‣ The equilibrium linear system has rank 2n–2.

‣ IF the system is solvable, then it has a two-dimensional family 
of solutions = all translations of the same convex embedding.

‣ The system is solvable IF weights are symmetric: λu→v = λv→u 



No, it doesn’t.

‣ The equilibrium linear system has rank 2n–2.

‣ Unfortunately, this system is not solvable in general. ☹

[Steiner Fischer 2004]



No, it doesn’t.

‣ The equilibrium linear system has rank 2n–2.

‣ Unfortunately, this system is not solvable in general. ☹

‣ Worse, averages of realizable barycentric coordinates are not 
necessarily realizable! 😫 

[Steiner Fischer 2004]



Sometimes it does.

‣ Rewrite the equilibrium system in matrix form: Lλ P = Tλ 

‣ Call the weight vector λ morphable if every column of Lλ sums 
to zero and every column of Tλ sums to zero.

[E Lin 2020]



Sometimes it does.

‣ Rewrite the equilibrium system in matrix form: Lλ P = Tλ 

‣ Call the weight vector λ morphable if every column of Lλ sums 
to zero and every column of Tλ sums to zero.

[E Lin 2020]

‣ Easy Lemma 1: Every morphable weight vector is realizable. 

‣ Easy Lemma 2: Averages of morphable weight vectors are 
morphable.



Linear algebra FTW!

‣ Equilibrium linear system: Lλ P = Tλ 

‣ λ is morphable if every column of Lλ sums to zero and every 
column of Tλ sums to zero. 

‣ Slightly Harder Lemma: Any barycentric weight vector for a 
convex embedding Γ can be scaled to a morphable weight 
vector for the same embedding Γ. 

▹ Let μu→v = αu λu→v, where α is any left null vector of Lλ. 

▹ Matrix-Tree Theorem (or Perron-Frobenius) implies wlog αu > 0 for all u.

[E Lin 2020]



Mighty morphin torus graphs

‣ Given two geodesic embeddings Γ0 and Γ1 on the flat torus. 

‣ Check whether Γ0 and Γ1 are isotopic in O(n) time.  

‣ Compute barycentric weight vectors λ0 and λ1 in O(n) time. 

‣ Scale to morphable weight vectors μ0 and μ1 in O(nω/2) time.  

‣ For any 0<t<1: 
▹ compute intermediate morphable weights μt = μ0(1–t) + μ1·t 

▹ compute embedding Γt by solving equilibrium system in O(nω/2) time.

[E Lin 2020]

[Chambers E Lin Parsa 2020][Colin de Verdière, de Mesmay 2014]

[Floater 2000]











Extensions and open problems

‣ We can morph between isotopic geodesic embeddings on any 
surface with negative curvature via barycentric interpolation 
(without scaling!) 

‣ Can we morph geodesic embeddings on the sphere? 

▹ Coherent embeddings: Yes, via Tutte and Maxwell-Cremona! 

▹ Convex embeddings: Yes(?), via edge contractions. 

▹ Arbitrary embeddings? Open!

[Luo Wu Zhu 2021]

[Richter-Gebert 1996]

[Cairns 1944]
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Thank you!



Thank you!


