Enumeration of square-tiled surfaces and metric ribbon graphs

Ivan Yakovlev
LaBRI, Bordeaux

Structures on surfaces, CIRM, Marseille
May 2, 2022

Square-tiled surfaces

Square-tiled surfaces

Square-tiled surfaces

2π - flat point

4π - singularity

Square-tiled surfaces

2π - flat point
4π - singularity

Counting square-tiled surfaces

I am interested in counting square-tiled surfaces with fixed number and angles of singularities $2 \pi\left(k_{1}+1\right), \ldots, 2 \pi\left(k_{n}+1\right)$.
More precisely, the limit

$$
\lim _{N \rightarrow+\infty} \frac{|\mathcal{S T}(k, N)|}{N^{2 g+n-1}}
$$

where

- $k=\left(k_{1}, \ldots, k_{n}\right)$
- g is the corresponding genus, $k_{1}+\ldots+k_{n}=2 g-2$;
- $\mathcal{S T}(k, N)$ is the set of surfaces with such singularities and at most N squares.

Cylinder decomposition

Cylinder decomposition

Cylinder decomposition

Cylinder decomposition

Square-tiled surface $=$ cylinders + ribbon graphs.

Back to counting

- Cylinders are easy to count: height $h_{i} \in \mathbb{Z}_{>0}$, circumference $L_{i} \in \mathbb{Z}_{>0}$.

Back to counting

- Cylinders are easy to count: height $h_{i} \in \mathbb{Z}_{>0}$, circumference $L_{i} \in \mathbb{Z}_{>0}$.
- Remains to count metric ribbon graphs of genus g with n boundary components of given perimeters $L_{1}, \ldots, L_{n} \in \mathbb{Z}_{>0}$.

Counting metric ribbon graphs

- For a fixed ribbon graph G the number of metrics which give the boundary components the perimeters L_{1}, \ldots, L_{n} is a piecewise quasi-polynomial $\mathcal{N}_{G}\left(L_{1}, \ldots, L_{n}\right)$.

Counting metric ribbon graphs

- For a fixed ribbon graph G the number of metrics which give the boundary components the perimeters L_{1}, \ldots, L_{n} is a piecewise quasi-polynomial $\mathcal{N}_{G}\left(L_{1}, \ldots, L_{n}\right)$.
- Example:

$$
\left\{\begin{array} { l }
{ x + y = L _ { 1 } } \\
{ y + z = L _ { 2 } } \\
{ z + x = L _ { 3 } } \\
{ x , y , z > 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x=\left(L_{1}+L_{3}-L_{2}\right) / 2 \\
y=\left(L_{2}+L_{1}-L_{3}\right) / 2 \\
z=\left(L_{3}+L_{2}-L_{1}\right) / 2 \\
x, y, z>0
\end{array}\right.\right.
$$

If $L_{1}+L_{2}+L_{3}$ is odd, then $\mathcal{N}_{G}=0$.
If $L_{1}+L_{2}+L_{3}$ is even, then $\mathcal{N}_{G}=1$ if L_{1}, L_{2}, L_{3} satisfy the triangle inequalities, and $\mathcal{N}_{G}=0$ otherwise.

Counting metric ribbon graphs

- For a fixed ribbon graph G the number of metrics which give the boundary components the perimeters L_{1}, \ldots, L_{n} is a piecewise quasi-polynomial $\mathcal{N}_{G}\left(L_{1}, \ldots, L_{n}\right)$.
- Example:

$$
\left\{\begin{array} { l }
{ x + y = L _ { 1 } } \\
{ y + z = L _ { 2 } } \\
{ z + x = L _ { 3 } } \\
{ x , y , z > 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x=\left(L_{1}+L_{3}-L_{2}\right) / 2 \\
y=\left(L_{2}+L_{1}-L_{3}\right) / 2 \\
z=\left(L_{3}+L_{2}-L_{1}\right) / 2 \\
x, y, z>0
\end{array}\right.\right.
$$

If $L_{1}+L_{2}+L_{3}$ is odd, then $\mathcal{N}_{G}=0$.
If $L_{1}+L_{2}+L_{3}$ is even, then $\mathcal{N}_{G}=1$ if L_{1}, L_{2}, L_{3} satisfy the triangle inequalities, and $\mathcal{N}_{G}=0$ otherwise.

- However, sometimes miracles happen...

Counting metric ribbon graphs

Theorem (Kontsevich)

Let $L_{1}+\cdots+L_{n}$ be even. The weighted count of trivalent metric ribbon graphs of genus g with n boundaries of perimeters L_{1}, \ldots, L_{n} is

$$
\mathcal{N}_{g, n}\left(L_{1}, \ldots, L_{n}\right)=N_{g, n}\left(L_{1}, \ldots, L_{n}\right)+\text { lower order terms },
$$

where $N_{g, n}$ is a homogeneous polynomial, whose coefficients are intersection numbers of psi-classes on the moduli space of curves $\mathcal{M}_{g, n}$.

Counting metric ribbon graphs

Theorem (Kontsevich)

Let $L_{1}+\cdots+L_{n}$ be even. The weighted count of trivalent metric ribbon graphs of genus g with n boundaries of perimeters L_{1}, \ldots, L_{n} is

$$
\mathcal{N}_{g, n}\left(L_{1}, \ldots, L_{n}\right)=N_{g, n}\left(L_{1}, \ldots, L_{n}\right)+\text { lower order terms }
$$

where $N_{g, n}$ is a homogeneous polynomial, whose coefficients are intersection numbers of psi-classes on the moduli space of curves $\mathcal{M}_{g, n}$.

Theorem (Y.)

The count of one-vertex, face-bipartite metric ribbon graphs of genus g with n black and n white boundaries of equal perimeters L_{1}, \ldots, L_{n} is

$$
\mathcal{Q}_{g, n}\left(L_{1}, \ldots, L_{n}\right)=Q_{g, n}\left(L_{1}, \ldots, L_{n}\right)+\text { lower order terms },
$$

where $Q_{g, n}$ is a homogeneous polynomial, whose coefficients enumerate certain families of metric plane trees.

