Embeddability of Graphs into 2-Dimensional Simplicial Complexes

Éric Colin de Verdière
CNRS, LIGM, Marne-la-Vallée, France

Joint work with Thomas Magnard

Embedding graphs on surfaces

- Input: A graph G with n vertices and edges; a surface S specified by its genus g and its orientability
- Question: Decide whether G has a topological embedding (a crossing-free drawing) into S.

$\stackrel{\square}{4}$

Embedding graphs on surfaces

- Input: A graph G with n vertices and edges; a surface S specified by its genus g and its orientability
- Question: Decide whether G has a topological embedding (a crossing-free drawing) into S.

Motivation: Algorithms for graphs on surfaces
Many problems can be solved faster for graphs embedded on a fixed surface than for general graphs (shortest paths, (multi)flows and (multi)cuts, disjoint paths, (sub)graph isomorphism, TSP, Steiner trees, etc.)

- Input: A graph G with n vertices and edges; a surface S specified by its genus g and its orientability
- Question: Decide whether G has a topological embedding (a crossing-free drawing) into S.

Motivation: Algorithms for graphs on surfaces
Many problems can be solved faster for graphs embedded on a fixed surface than for general graphs (shortest paths, (multi)flows and (multi)cuts, disjoint paths, (sub)graph isomorphism, TSP, Steiner trees, etc.)

Existing results

-
- [Mohar, 1999]: $f(g) \cdot n$ (very technical)
- [Kawarabayashi et al., 2008]: $2^{\text {poly }(g)} \cdot n$ (only appeared in extended abstract)
- Graph minor theory: $f(g) \cdot n^{3}$ [Robertson and Seymour, 1995]+[Adler et al., 2008].

Our goal: beyond surfaces

- Input: A graph G; a 2-dimensional simplicial complex C
- Question: Decide whether G embeds into C.

Our goal: beyond surfaces

- Input: A graph G; a 2-dimensional simplicial complex C
- Question: Decide whether G embeds into C.

Our goal: beyond surfaces

- Input: A graph G; a 2-dimensional simplicial complex C
- Question: Decide whether G embeds into C.

- everything is topological: no constraint on the embedding;
- actually, "2-dimensional" is an unnecessary restriction;
- NP-hard (surfaces are 2-complexes);
- the set of graphs embeddable on C is not minor-closed;
- encompasses other known problems, e.g., crossing number.

Our goal: beyond surfaces

- Input: A graph G; a 2-dimensional simplicial complex C
- Question: Decide whether G embeds into C.

- everything is topological: no constraint on the embedding;
- actually, "2-dimensional" is an unnecessary restriction;
- NP-hard (surfaces are 2-complexes);
- the set of graphs embeddable on C is not minor-closed;
- encompasses other known problems, e.g., crossing number.

Our goal: beyond surfaces

- Input: A graph G; a 2-dimensional simplicial complex C
- Question: Decide whether G embeds into C.

- everything is topological: no constraint on the embedding;
- actually, "2-dimensional" is an unnecessary restriction;
- NP-hard (surfaces are 2-complexes);
- the set of graphs embeddable on C is not minor-closed;
- encompasses other known problems, e.g., crossing number.

Our result

Our result
An algorithm with running time $2^{\text {poly }(c)} \cdot n^{2}$ where

- n is the number of vertices and edges of G;
- c is the number of simplices of C.

Our result

Our result

An algorithm with running time $2^{\text {poly(c) }} \cdot n^{2}$ where

- n is the number of vertices and edges of G;
- c is the number of simplices of C.

Features

- Our algorithm is independent from the existing algorithms for surfaces, and simpler...
- but quadratic in n instead of linear.
- Main strategy of the algorithm:
- reduce to the case where G has branchwidth poly (c) (irrelevant vertex method),
- use dynamic programming.

Our result

Our result

An algorithm with running time $2^{\text {poly(c) }} \cdot n^{2}$ where

- n is the number of vertices and edges of G;
- c is the number of simplices of C.

Features

- Our algorithm is independent from the existing algorithms for surfaces, and simpler...
- but quadratic in n instead of linear.
- Main strategy of the algorithm:
- reduce to the case where G has branchwidth poly (c) (irrelevant vertex method),
- use dynamic programming.

THANKS FOR YOUR ATTENTION!

