Finding weakly simple closed quasigeodesics on polyhedral spheres

Arnaud de Mesmay (CNRS, LIGM)

CIRM, May 2nd 2022

Joint work with Jean Chartier (LAMA, UPEC).

Geodesics on spheres

Theorem (Lyurstenik-Schnirrelman '29, etc.)
Any Riemannian sphere admits at least three simple closed geodesics.

Main question

Cook up an algorithm to find those in a discrete setting.

What is ...?

What is a discrete sphere?

A polyhedral sphere is a sphere made of Euclidean polygons glued to each other.

Example: (Convex) polyhedra

What is a quasigeodesic?

A quasigeodesic is a curve that goes straight inside and between two polygons and forms equal angles when crossing a vertex.

What is ...?

What is a discrete sphere?

A polyhedral sphere is a sphere made of Euclidean polygons glued to each other.

Example: (Convex) polyhedra

What is a quasigeodesic?

A quasigeodesic is a curve that goes straight inside and between two polygons and forms equal angles when crossing a vertex.

What is ...?

What is a discrete sphere?

A polyhedral sphere is a sphere made of Euclidean polygons glued to each other.

Example: (Convex) polyhedra

What is a quasigeodesic?

A quasigeodesic is a curve that goes straight inside and between two polygons and forms equal angles when crossing a vertex.

What is ...?

What is a discrete sphere?

A polyhedral sphere is a sphere made of Euclidean polygons glued to each other.

Example: (Convex) polyhedra

What is a quasigeodesic?

A quasigeodesic is a curve that goes straight inside and between two polygons and forms equal angles when crossing a vertex.

$$
\alpha=\beta
$$

What is ...?

What is a discrete sphere?

A polyhedral sphere is a sphere made of Euclidean polygons glued to each other.

Example: (Convex) polyhedra

What is a quasigeodesic?

A quasigeodesic is a curve that goes straight inside and between two polygons and forms equal angles angles at most/least π when crossing a convex/concave vertex.

$\alpha=\beta$
$\alpha+\beta \leq 2 \pi$
$\alpha \leq \pi$
$\beta \leq \pi$

What is ...?

What is a discrete sphere?

A polyhedral sphere is a sphere made of Euclidean polygons glued to each other.

Example: (Convex) polyhedra

What is a quasigeodesic?

A quasigeodesic is a curve that goes straight inside and between two polygons and forms angles at most/least π when crossing a convex/concave vertex.

Theorem (Pogorelov '49)

Any convex polyhedron admits at least three simple closed quasigeodesics.

Results and questions

Question [Demaine, O'Rourke, Wyman '90-'07]
Cook up an algorithm to find those.

Theorem (Chartier, dM 2022)

Any polyhedral sphere admits a weakly simple closed quasigeodesic which crosses or uses $O(d M / h)$ times the edges of the sphere.

Corollary

Algorithm to find such a weakly simple closed quasigeodesic in exponential time.
Main technical tool: discrete version of a curve-shortening flow, adapted from the disk flow of [Hass and Scott '94].

Open question

Does there always exists a weakly simple closed quasigeodesic that crosses/uses each edge at most C times for some small constant C ?

