

Based on joint and on-going works with T. Budd, T. Budzinski, B. Petri

Numb

Random triangulations

Random triangulations

Random triangulations

Conjecture (Budzinski, C., Petri):

The diameter of $T_{\bullet,n}$ converges in law towards an (explicit) random variable with support $\{2,3\}$. Even more...

Configuration model

The dual of $T_{\bullet,n}$ is a configuration model or equivalently a random trivalent graph (with orientation):

If each edge of $\text{Dual}(T_{\bullet,n})$ is independently given a random exponential length, then the statistics of all cycle lengths converge towards a Poisson point process (PPP) with intensity

$$\frac{\sinh(t)}{t} \mathbf{1}_{t>0} dt \qquad \qquad \frac{\cosh(t) - 1}{t} \mathbf{1}_{t>0} dt \quad \text{Janson \& Louf}$$

In the unicellular case

Random triangulations with constrained genus

Simulations ?

The rocking horse

The goat with an umbrella

The executioner

Période bleue

Période rose

The Brownian sphere (2011)

Theorem : We have the following convergence in law for the Gromov-Hausdorff distance on (isometry classes of) compact metrig spaces: ٠d /eff gr Indom compact metric space $\dim_{\mathrm{H}}(\mathbb{S}) = 4$ Le Gall (see also Miermont) \mathbb{S} ho

Moduli space of hyperbolic surfaces

Weil-Peterson measure

Random WP-hyperbolic surfaces

Petri

Set of lengths of primitive closed loops on $\mathcal{S}_{g,0}$ converges in law towards a PPP with intensity

$$\frac{\cosh(t) - 1}{t} \mathbf{1}_{t>0} \mathrm{d}t$$

Mirzakhani

Other works (Guth, Parlier, Young) especially recently on the spectral gap

Random WP-hyperbolic surfaces

Two must useful tools

Tableau 2: Tutte, Mirzakhani and

Ongoing work with Thomas Budzinski & Bram Petri

Peeling process Idea: turn Tutte's equation into a growth process/ explorati mechanism of random triangulations. p + 1Key: A terent ways to choose the next edge to peel yeeling algorithm) lead to different ways to explore the ntriang bation, hence different type of geometric infor dation! $\mathbf{r}(p_1) \mathbf{r}(p_2)$ n_2 8, With probab.

Turn Mirzakani's recursion into peeling

Develop the peeling process of WP surfaces. In genus 0 in particular, connect to the Growth-Fragmentation trees introduced recently by Bertoin.

 t_2

lø

Same law of random labeled tree But different geometric information

 ℓ_1

Teasing for Budzinski, C., Petri 2022++

C2

 $n^{3/4}$

There's something fishy about it, isn'it ?

Section from $\mathscr{M}_{g,n}$ to $\mathscr{T}_{g,n}$

By imposing geometric constraint on the pant decomposition (In the case of Mirzakhani, that the pairs of pants are compatible with the launchs of geodesics) One can choose unique coordinates representing a given hyperbolic surface.

Tableau 3: Penner, Schaeffer and

Courtesy of J. Bettinelli

Scaling limits of contour and label process of random labeled tree -> Le Gall's Brownian snake Main ingredient in the proof of the convergence towards the Brownian sphere

Penner's decorated Teichmüller theory

Penner's decorated Teichmüller theory

Weil-Peterson measure is expressed nicely in this coordinate system.

Here also, this is over-parametrized. As before, if we impose some geometric condition on the labeled triangulation on can specify uniquely the coordinates

-> Bowditch-Epstein-Penner Voronoï construction

g = 0 with n punctures

g = 0 with n punctures

g = 0 with n punctures

g = 0 with n punctures

g = 0 with n punctures

 $\sim - 0$ with a purple stars

 $\sim - 0$ with a purple in 2

 $\sim - 0$ with a purple stars

g = 0 with n punctures

g = 0 with n punctures

g = 0 with *n* punctures

g = 0 with *n* punctures

In Penner's λ -lengths, represented as Euclidean triangles

There's something fishy about it, isn'it ?

Thanks !

