Random Maps \& Hyperbolic Surfaces

Tableau 1: Results

Part I: Random triangulations

Random triangulations

Random triangulations

Genus 2

Random triangulations

$T_{\bullet, n}$ Uniform triangulation with n triangles

$$
\operatorname{Genus}\left(T_{\bullet, n}\right) \approx \frac{n}{4}-\log n \cdot \mathscr{N}
$$

Few vertices $(\log n)$, high degrees (n), very small graph diameter $(O(1))$

Conjecture (Budzinski, C., Petri):
The diameter of $T_{\bullet, n}$ converges in law towards an (explicit) random variable with support $\{2,3\}$.
Even more...

Configuration model

The dual of $T_{\bullet, n}$ is a configuration model or equivalently a random trivalent graph (with orientation):

$\operatorname{Diam}\left(\operatorname{Dual}\left(T_{\cdot, n}\right)\right) \approx \log _{2} n$

Bollobas \& Fernandez De La Vega

If each edge of $\operatorname{Dual}\left(T_{\bullet, n}\right)$ is independently given a random exponential length, then the statistics of all cycle lengths converge towards a Poisson point process (PPP) with intensity

$$
\frac{\operatorname{Sinh}(t)}{t} \mathbf{1}_{t>0} \mathrm{~d} t
$$

$$
\frac{\operatorname{Cosh}(t)-1}{t} \mathbf{1}_{t>0} \mathrm{~d} t \quad \text { Janson \& Louf }
$$

In the unicellular case

Random triangulations with constrained genus

$T_{g, n}$ uniform triangulation with n triangles and genus $0 \leq g \leq \frac{n}{4}$

$$
\# \mathscr{T}_{g, n} \approx n^{2 g} \exp (n \cdot f(g / n))
$$

For some (rather explictit) $f:[0 ; 1 / 4] \rightarrow \mathbb{R}_{+}$

Budzinski Louf

Planar case $g=0$ (very unlikely for $T_{\bullet, n}$)

Simulations?

The rocking horse

象平

The goat with an umbrella

The executioner

Période bleue

Période rose

The Brownian sphere (2011)

Theorem: We have the following convergence in law for the

Gromov-Hausdorff distance on (isometry classes of) compact metric spaces:

$$
\left(\operatorname{Vertices}\left(T_{0, n}\right), n^{-1 / 4} \cdot \mathrm{~d}_{\mathrm{gr}}\right) \underset{n \rightarrow \infty}{\longrightarrow}(\mathbb{S}, \Delta)
$$

Random compact metric space

$$
\operatorname{dim}_{H}(\mathbb{S})=4
$$

Le Gall (see also Miermont)

Part II: Random hyperbolic surfaces

Moduli space of hyperbolic surfaces

We let $\mathscr{M}_{g, n}$ be the moduli space of isometry classes of closed hyperbolic surfaces with genus g and n punctures.
Hard to understand, usually use Teichmüller space $\mathscr{T}_{g, n}$ (overparametrized)

Down-to-earth: gluing of hyperbolic pairs of pants

Weil-Peterson measure

We let $\mathscr{M}_{g, n}$ be the moduli space of isometry classes of closed hyperbolic surfaces with genus g and n punctures.
Hard to understand, usually use Teichmüller space $\mathscr{T}_{g, n}$ (overparametrized)

Fenchel-Nielsen coordinates

Wolpert (81)
∞ - Lebesgue measure
on $\mathscr{T}_{g, n}=\left(\mathbb{R} \times \mathbb{R}_{+}\right)^{3 g-3}$

Finite measure on $\mathscr{M}_{g, n}$

Random WP-hyperbolic surfaces

We $\mathcal{S}_{g, n}$ be a random hyperbolic surface sampled according to (normalized) WP measure on $\mathscr{M}_{g, n}$

In high genus as $g \rightarrow \infty$

The random surface $\mathcal{S}_{g, 0}$ has logarithmic diameter, a spectral gap, a positive Cheeger constant... (non optimal constants)

Mirzakhani
Set of lengths of primitive closed loops on $\mathcal{S}_{g, 0}$ converges in law towards a PPP with intensity

$$
\frac{\operatorname{Cosh}(t)-1}{t} \mathbf{1}_{t>\mathrm{d}} \mathrm{~d} t
$$

Other works (Guth, Parlier, Young) especially recently on the spectral gap

Random WP-hyperbolic surfaces

In genus $\mathbf{0}$ with many punctures we have the convergence in distribution

$$
n^{-1 / 4} \cdot \mathcal{S}_{0, n} \longrightarrow \text { Brownian Sphere* }
$$

As $n \rightarrow \infty$ for the Gromov-Prokhorov distance**

There's something fishy about it, isn'it ?

Two must useful tools

Tree bijections

Peeling process

Tableau 2: Tutte, Mirzakhani and

Peeling process

Tutte's equation for triangulations

U(p)=

$$
p_{1}+p_{2}+2=p
$$

Recursion on $\mathbb{T}_{0, n}^{(p)}$

Idea: turn Tutte's equation into a growth process/ exploration mechanism of random triangulations.

Applications:

- Study the volume growth (recovering $n^{1 / 4}$ diameter) Angel, C. \& Le Gall
- Study the behavior of simple random walk

Benjamini \& C.

- Study Bernoulli percolation

Angel, Angel \& C., C. \& Richier, Budd \& C.

Mirzakahni's recursion for WP volumes

Turn Mirzakani's recursion into peeling

Develop the peeling process of WP surfaces. In genus 0 in particular, connect to the Growth-
Fragmentation trees introduced recently by Bertoin.

Same law of random labeled tree But different geometric information

There's something fishy about it, isn'it ?

Section from $\mathscr{M}_{g, n}$ to $\mathscr{T}_{g, n}$

Fenchel-Nielsen coordinates
$\mathbb{R}^{3 g-3} \times \mathbb{R}_{+}^{3 g-3}=\mathscr{T}_{g, n} \rightarrow \mathscr{M}_{g, n}$
Overparametrized

By imposing geometric constraint on the pant decomposition (In the case of Mirzakhani, that the pairs of pants are compatible with the launchs of geodesics)

One can choose unique coordinates representing a given hyperbolic surface.

Tableau 3: Penner, Schaeffer and

Tree bijections

Schaeffer-type constructions

Quadrangulation

Encoding via a labeled tree where labels represent Distances from the distinguished red point.

Schaeffer-type constructions

Chassaing-Schaeffer
Marckert-Mokkadem
Miermont
Le Gall

Scaling limits of contour and label process of random labeled tree -> Le Gall's Brownian snake Main ingredient in the proof of the convergence towards the Brownian sphere

Penner's decorated Teichmüller theory

Triangulation (Vertices at cusps)
 on the punctures

Penner's decorated Teichmüller theory

Weil-Peterson measure is expressed nicely in this coordinate system.

Here also, this is over-parametrized. As before, if we impose some geometric condition on the labeled triangulation on can specify uniquely the coordinates
-> Bowditch-Epstein-Penner Voronoï construction

Bowditch-Epstein-Penner Voronoï construction

$$
g=0 \text { with } n \text { punctures }
$$

Bowditch-Epstein-Penner Voronoï construction

$$
g=0 \text { with } n \text { punctures }
$$

Bowditch-Epstein-Penner Voronoï construction

$$
g=0 \text { with } n \text { punctures }
$$

Bowditch-Epstein-Penner Voronoï construction

$$
g=0 \text { with } n \text { punctures }
$$

Bowditch-Epstein-Penner Voronoï construction

$$
g=0 \text { with } n \text { punctures }
$$

Bowditch-Epstein-Penner Voronoï construction

$$
g=0 \text { with } n \text { punctures }
$$

Bowditch-Epstein-Penner Voronoï construction

$$
g=0 \text { with } n \text { punctures }
$$

Bowditch-Epstein-Penner Voronoï construction

$$
g=0 \text { with } n \text { punctures }
$$

Bowditch-Epstein-Penner Voronoï construction

$$
g=0 \text { with } n \text { punctures }
$$

Bowditch-Epstein-Penner Voronoï construction

$$
g=0 \text { with } n \text { punctures }
$$

Bowditch-Epstein-Penner Voronoï construction

$$
g=0 \text { with } n \text { punctures }
$$

Bowditch-Epstein-Penner Voronoï construction

$$
g=0 \text { with } n \text { punctures }
$$

In Penner's λ-lengths, represented as Euclidean triangles

$\ell_{e}=\mathrm{e}^{\lambda_{e} / 2}$

Voronoï condition

Back to Schaeffer

Quadrangulation

There's something fishy about it, isn'it ?

LET NONE BUT GEOMETERS ENTER HERE

Thanks!

