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variation distance to the graph of a random map (no genus constraint) over 3n
2 edges5 which we named the

“Poisson–Dirichlet graph”:

Project 12. Show that the graph of T•,n (obtained by forgetting the cyclic orientations of the edges around

vertices) is very close in total variation distance to the graph of a random map with
3n
2 edges. In particular,

the diameter of T•,n converges in distribution towards a random variable with support equal to {2, 3}, see
[26, Corollary 2].
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Figure 2: Three samples of the graph structure of a uniform random map (genus
unconstrained) with 2000 edges. We see that the graph is highly connected with few
vertices carrying many multiple edges and loops.

Question 1 (Universality for GP). Let (Pn)n�1 be a good sequence of configurations. We
denote by �n 2 {even, odd} the parity of n + #Pn. Then we have

dTV (GPn , G�n
n ) ! 0, as n ! 1.

Here and later we write dTV(X, Y ) for the total variation distance between the laws
of two random variables X and Y . Compelling evidence for the above conjecture is the
result of Chmutov & Pittel [11] (generalizing work by Gamburd [15] in the case when the
polygons have the same perimeter), which asserts that when all the polygon’s perimeters
are larger than 3 then up to an error of O(1/n) in total variation distance, the degree
distribution of GPn is the same3 as that of G

�n
n . The proof of [11] is based on representation

theory of the symmetric group. One of the goal of this work is to give a probabilistic
proof of a weak version (Theorem 6) of the above conjecture. We also take this work as a
pretext to gather a few results (some of which may belong to the folklore) on the geometry
of a uniform random map with n edges.

In the rest of the paper, all the maps considered are labeled.

1.2 Geometry of random maps

For n � 1, we denote by Mn a random (labeled) map chosen uniformly among all (labeled)
maps with n edges. Recall that its underlying graph structure is Gn. It is well known that
the distribution of degrees of a random map is closely related to the cycle structure of a
uniform permutation, we make this precise in Theorem 2.

3Their result is expressed in terms of the cycle structure of a uniform permutation over A2n if k and
n have the same parity (resp. Ac

2n if k and n have di↵erent parity) where A2n � S2n is the group of
alternate permutations over {1, 2, . . . , 2n}. But given our Theorem 2 this can be rephrased as the degree

distribution of G
odd/even
n .
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Figure 6: Table of the geometry of Tg,n

Random maps without constraint on the genus are much simpler to study through their coding as a triplet

of permutations (encoding the edges, faces and vertices). Indeed, the powerful machinery of representation

theory of the symmetric group is at our disposal (see Gamburd [55], Chmutov & Pittel [32]), as well as the

probabilistic tools of the configuration model [17].

Obviously, Projects 11 and 12 have declensions to other models of maps, see [28]. With I. Kortchemski

and C. Marzouk [37], we recently studied the model Mn(f, g) of a random map chosen uniformly among all

maps having n edges, f faces and genus g, i.e. with all Euler parameters fixed. More precisely, we focused

on the unicellular case (f, g) = (1, sn) or the planar case (f, g) = (sn, 0) where 1 ⌧ sn ⌧ n. We found a

novel scaling limit at the mesoscopic scale
p

n/sn made of a (random) trivalent graph whose edges are

replaced by forests of exponentially biased Brownian trees.

Project 13. Study the geometry of Mn(fn, gn) when 1 ⌧ fn + gn ⌧ n. In particular, when fn/gn ! ↵ > 0

its mesoscopic scaling limit at scale

p
n/fn should be obtained by replacing the edges of the dual of a PSHIT

[34] by forests of exponentially biased Brownian trees.

In the case (f, g) = (1, gn), it should not be hard to study the global geometry of Mn(1, gn) and it is

very likely that we can recover the beautiful results of Janson & Louf [68] on the statistics of short cycles in

unicellular maps in high genus: our work shows that the caricature of this rescaled metric space is obtained

by taking a random trivalent graph over 4gn vertices and dilating its edges by i.i.d. exponential random

variables. Surprinsingly [68], as gn ! 1 the statistics of the short cycles in this random metric space is the

same as the statistics of short curves in Weil-Petersson random surfaces as proved by Mirzakhani & Petri

[100] (see Project 23 below).

Studying non-connected maps is also interesting and connects to the Erdös-Rényi case:

5for the sake of simplicity we neglect the parity issues here
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of permutations (encoding the edges, faces and vertices). Indeed, the powerful machinery of representation
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with G. Miermont (ENS Lyon) and A. Riera (U. Zürich)
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to “cut” the underlying surface by launching orthogonally from a given point on the boundary a geodesic

and revealing the pair of pants it spirals around. If one iterates this procedure and reveals the surface

pair of pants by pair of pants in a Markovian way, one creates an analogue of the famous peeling

explorations used in random map theory [33]. As it was the case for planar maps, in the genus zero case

the peeling trees should be connected with 3/2-stable growth-fragmentation processes:

Project 21 (Peeling Weil–Petersson random surfaces). Use Mirzakhani’s recursion [97] to develop the

“peeling” of Weil–Petersson random surfaces. Show that in the genus 0 case with n punctures, the peeling

trees labeled by the lengths of the geodesic boundaries converge towards the 3/2-stable growth-fragmentation

tree of [13, 14], see Fig. 9.

Figure 9: Illustration of the peeling of a genus 0 hyperbolic surface with punctures. To reveal the

next pair of pants we trigger a geodesic orthogonal to a boundary component and consider the pair

of pants which contains it (it is well-defined with probability 1 under WP measure).

We expect spectacular applications of the peeling process of Weil–Petersson surfaces. Indeed, such

explorations are flexible in the sense that one can choose (only based on the piece of the surface revealed so

far) the next point on the boundary where to explore the next pair of pants. For example in the planar case,

we hope to use it to prove that the conformal type of the local limit of S0,n (see Project 20) is parabolic12,

see [58, 56] or [33, Chapter 15] for analogous results in random planar map theory. This framework should

also be important to prove:

Project 22 (Weil–Petersson and Liouville quantum gravity). After uniformizing S0,n on S
2
by fixing three

points (at random say), show that the push-forward of the hyperbolic measure is given as n ! 1 by (a

variant) of the

p
8/3-Liouville Quantum Gravity measure, see Fig. 1 (Right).

II.3.3 Back to maps. In this proposal we have encountered many similarities between the theory of

random maps and random WP surfaces: a Schae↵er-type construction, a peeling exploration, the same

(expected) scaling limits in g = 0, same statistics of short curves in high genus [68, 37, 100]... Several other

striking similarities have been noticed in the literature such as the total pants length by Guth & Parlier &

Young [59] which we quote

[59]: “We’re not sure how to phrase this in a precise way, but there does seem to be a strong

analogy between combinatorial surfaces with N triangles and hyperbolic surfaces of genus 4N .”

Project 23. Find a firm link between the geometry of some model of random map and random WP surfaces.

In particular, can one design a natural model of random map whose scaling limit gives a random WP surface?

12equivalently, Brownian motion on this local limit is neighborhood recurrent
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Section a. State of the art and objectives.

“What does a random planar geometry look like ?”

The main goal of this proposal is to explore random planar metrics. Since the beginning of the

last millenium, probability theory has witnessed spectacular developments in random planar geometry and

more particularly around random planar maps and Liouville Quantum gravity. These are two mathematical

approaches developed over the last two decades to define formally what a “continuum” random surface could

be, focusing mainly on the topology of the sphere.

Random planar maps and Brownian geometry. The first approach is to discretize the problem and

use triangulations (or more generally planar maps) as a model of a surface. Given a set of n triangles,

consider all the possible ways of gluing those triangles along their sides to form a topological 2-sphere S
2.

There is a finite number of possibilities and we shall consider such a gluing1 T0,n chosen uniformly at random

(the index 0 is here to indicate the genus g = 0). As can be seen on Fig. 1, the resulting geometry is rather

peculiar and displays fractal behavior. If one sees the vertex set of T0,n, endowed with the graph distance

dgr as a finite metric space then Le Gall [79] (see also Miermont [89]) proved the following convergence in

distribution for the Gromov–Hausdor↵ topology

(T0,n, n�1/4 · dgr)
(d)���!

n!1
(S, �). (1)

=

Figure 1: (Left). A triangulation of the sphere with 12 triangles. (Center). A large uniform

triangulation of the sphere with 10 000 triangles embedded in three dimensions in such a way that

the distances in the ambient R
3 tend to approximate the graph distances. (Right). A“uniformization”

of a piece of a large triangulation. Courtesy of Timothy Budd.

The limit (S, �) is a random compact metric space, almost surely homeomorphic to the 2-sphere [82] but

of Hausdor↵ dimension 4 [77] called the Brownian sphere. The Gromov–Hausdor↵ distance is a metric

1To be precise, we only consider gluings that preserve the orientation and we shall always distinguish an oriented edge to

root the triangulation so as to remove the possible symmetry factors

1
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Random triangulations
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Random triangulations

T∙,n Uniform triangulation with  trianglesn

Genus(T∙,n) ≈
n
4

− log n ⋅ 𝒩

Conjecture (Budzinski, C., Petri): 

The diameter of  converges in law towards an 
(explicit) random variable with support . 

Even more…

T∙,n
{2,3}

Scaling limit of planar maps with large faces

N. Curien (Université Paris-Saclay)
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Few vertices ( ), high degrees ( ), very small graph diameter ( )log n n O(1)

Figure 2: Three samples of the graph structure of a uniform random map (genus
unconstrained) with 2000 edges. We see that the graph is highly connected with few
vertices carrying many multiple edges and loops.

Question 1 (Universality for GP). Let (Pn)n>1 be a good sequence of configurations. We
denote by ✏n 2 {even, odd} the parity of n+#Pn. Then we have

dTV (GPn ,G✏n
n ) ! 0, as n ! 1.

Here and later we write dTV(X, Y ) for the total variation distance between the laws
of two random variables X and Y . Compelling evidence for the above conjecture is the
result of Chmutov & Pittel [11] (generalizing work by Gamburd [15] in the case when the
polygons have the same perimeter), which asserts that when all the polygon’s perimeters
are larger than 3 then up to an error of O(1/n) in total variation distance, the degree
distribution of GPn is the same3 as that of G✏n

n . The proof of [11] is based on representation
theory of the symmetric group. One of the goal of this work is to give a probabilistic
proof of a weak version (Theorem 6) of the above conjecture. We also take this work as a
pretext to gather a few results (some of which may belong to the folklore) on the geometry
of a uniform random map with n edges.

In the rest of the paper, all the maps considered are labeled.

1.2 Geometry of random maps

For n > 1, we denote by Mn a random (labeled) map chosen uniformly among all (labeled)
maps with n edges. Recall that its underlying graph structure is Gn. It is well known that
the distribution of degrees of a random map is closely related to the cycle structure of a
uniform permutation, we make this precise in Theorem 2.

3
Their result is expressed in terms of the cycle structure of a uniform permutation over A2n if k and

n have the same parity (resp. Ac
2n if k and n have di↵erent parity) where A2n ⇢ S2n is the group of

alternate permutations over {1, 2, . . . , 2n}. But given our Theorem 2 this can be rephrased as the degree

distribution of Godd/even
n .
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Configuration model
The dual of   is a configuration model or equivalently a random 

trivalent graph (with orientation):
T∙,n

Diam(Dual(T∙,n)) ≈ log2 n
Bollobas & Fernandez De La Vega

If each edge of  is independently given a random 
exponential length, then the statistics of all cycle lengths 
converge towards a Poisson point process (PPP) with intensity

Dual(T∙,n)

Sinh(t)
t

1t>0dt
Cosh(t) − 1

t
1t>0dt

In the unicellular case

Janson & Louf

Parking on a tree

���
248

� 6

�
�

1
3

�
�

5
9

� 7� 1

���
248

� 6

� 3

�
�

5
9

� 7� 1

� 2��
48

� 6

� 3

�
�

5
9

� 7� 1

� 2 � 3

1

��
48

� 6 �
�

5
9

� 7� 1

� 2 � 3

� 4

1

1

�
8

� 6 �
�

5
9

� 7� 1

� 2 � 3

� 4

� 5

1

1

�
8

� 6 � 9

� 7� 1

� 2 � 3

� 4

� 5� 6

1

1

�
8

� 9

� 7� 1

� 2 � 3

� 4

� 5�6

� 7

1

1

�
8

� 9

� 1

� 2 � 3

� 4

� 5�6

� 7

�
8

1

2

� 9

� 1

� 2 � 3

� 4

� 5� 6

� 7

�
8
�
9

1

2

1

1

1



Random triangulations with constrained genus

Tg,n uniform triangulation with  triangles and genus n 0 ≤ g ≤
n
4

=Planar case  (very unlikely for )g = 0 T∙,n

Simulations ?

Scaling limit of planar maps with large faces

N. Curien (Université Paris-Saclay)
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#𝒯g,n ≈ n2g exp(n ⋅ f(g/n))

Budzinski Louf

For some (rather explicit)  f : [0; 1/4] → ℝ+
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The rocking horse a > 2The rocking horse



The goat with an umbrella a > 2The goat with an umbrella



The executioner a > 2The executioner



Blue period a > 2Période bleue



Pink period a > 2Période rose



The Brownian sphere (2011)

Scaling limit of planar maps with large faces

N. Curien (Université Paris-Saclay)
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(Vertices(T0,n), n−1/4 ⋅ dgr) ⟶
n→∞

(𝕊, Δ)

Random compact metric space 

dimH(𝕊) = 4

𝕊 ∼
homeo

Le Gall (see also Miermont)

Theorem : We have the following convergence in law for the 

Gromov-Hausdorff distance on (isometry classes of) 

compact metric spaces:
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Section a. State of the art and objectives.

“What does a random planar geometry look like ?”

The main goal of this proposal is to explore random planar metrics. Since the beginning of the

last millenium, probability theory has witnessed spectacular developments in random planar geometry and

more particularly around random planar maps and Liouville Quantum gravity. These are two mathematical

approaches developed over the last two decades to define formally what a “continuum” random surface could

be, focusing mainly on the topology of the sphere.

Random planar maps and Brownian geometry. The first approach is to discretize the problem and

use triangulations (or more generally planar maps) as a model of a surface. Given a set of n triangles,

consider all the possible ways of gluing those triangles along their sides to form a topological 2-sphere S
2.

There is a finite number of possibilities and we shall consider such a gluing1 T0,n chosen uniformly at random

(the index 0 is here to indicate the genus g = 0). As can be seen on Fig. 1, the resulting geometry is rather

peculiar and displays fractal behavior. If one sees the vertex set of T0,n, endowed with the graph distance

dgr as a finite metric space then Le Gall [79] (see also Miermont [89]) proved the following convergence in

distribution for the Gromov–Hausdor↵ topology

(T0,n, n�1/4 · dgr)
(d)���!

n!1
(S, �). (1)

=

Figure 1: (Left). A triangulation of the sphere with 12 triangles. (Center). A large uniform

triangulation of the sphere with 10 000 triangles embedded in three dimensions in such a way that

the distances in the ambient R
3 tend to approximate the graph distances. (Right). A“uniformization”

of a piece of a large triangulation. Courtesy of Timothy Budd.

The limit (S, �) is a random compact metric space, almost surely homeomorphic to the 2-sphere [82] but

of Hausdor↵ dimension 4 [77] called the Brownian sphere. The Gromov–Hausdor↵ distance is a metric

1To be precise, we only consider gluings that preserve the orientation and we shall always distinguish an oriented edge to

root the triangulation so as to remove the possible symmetry factors

1
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two parameters Xe > 0 and ✓e 2 R for each edge e of g. The quantities Xe and ✓e are called the Fenchel–

Nielsen coordinates. Then we can glue, according to the combinatorics of g, pairs of pants whose boundary

lengths are prescribed by Xe with twists ✓e to construct a hyperbolic surface. When these coordinates are

taken at random, we shall speak below of random pantalonnade.

Xe

✓e

Figure 8: (Left). Given a trivalent oriented graph (in gray) whose edges are labeled by numbers

X· � 0 and ✓· 2 R, we can form a hyperbolic surface by gluing the corresponding pairs of pants

whose boundary lengths are prescribed by X and twists by ✓. (Right). A realization of the Markov

hyperbolic triangulation of [46].

We used this model of random hyperbolic surface in [27] where the underlying trivalent graph is taken

uniformly at random and the Fenchel–Nielsen coordinates are constant X ⌘ a and ✓ ⌘ 0. Our construction

calls for a natural generalization:

Project 18 (Global geometry of random pantalonnade). Understand global geometric parameters (diameter,

(separating)-systole, Cheeger constant...) of a random pantalonnade as a function of the law of the underlying

random trivalent graph (e.g. uniform) and the law of the Fenchel–Nielsen coordinates (e.g. boundary lengths

i.i.d. with a given law and uniform twists).

As opposed to the above “global” behavior of the surface, when the Fenchel–Nielsen coordinates are

i.i.d. and when the boundary lengths are large, we expect that the injectivity radius10 at a typical point of

the surface (for the hyperbolic measure) tends to 1 in probability. More precisely, the surface decorated by

the non-contractible geodesics around the pants should converge locally in distribution towards the Markov

hyperbolic lamination of the plane that we introduced with the Fields medallist Wendelin Werner ten

years ago (motivated by completely di↵erent considerations!). Heuristically, this is the only (law of a)

tiling of the hyperbolic plane with ideal triangles such that the three connected components outside of a

given triangle are independent, see Fig. 8 right for a simulation. To be precise, we shall root our random

pantalonnades by sampling a uniform point ⇢ according to the (finite) hyperbolic measure and look at the

scenery around ⇢. This is known as the “Benjamini–Schramm convergence” in the context of random graphs

and Riemannian manifolds [10, 1, 2]:

Project 19 (Local geometry of random pantalonnades). Show under mild assumptions (large geodesic

boundaries and i.i.d. uniform twists) that random pantalonnades decorated with the geodesic boundaries

converge in distribution in the Benjamini–Schramm sense towards the Markovian hyperbolic triangulation

of [46].

II.3. Weil–Petersson. A challenging and popular model of random hyperbolic surface is the following.

When 2g � 2 + n > 0, the moduli space Mg,n is equipped with a natural finite measure called the Weil–

Petersson measure and denoted here by WP. After normalization, this measure enables us to sample
10recall that the injectivity radius of a surface S at the point p is the largest radius such that the ball centered around p in

S is isometric to the corresponding ball in hyperbolic space
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to “cut” the underlying surface by launching orthogonally from a given point on the boundary a geodesic

and revealing the pair of pants it spirals around. If one iterates this procedure and reveals the surface

pair of pants by pair of pants in a Markovian way, one creates an analogue of the famous peeling

explorations used in random map theory [33]. As it was the case for planar maps, in the genus zero case

the peeling trees should be connected with 3/2-stable growth-fragmentation processes:

Project 21 (Peeling Weil–Petersson random surfaces). Use Mirzakhani’s recursion [97] to develop the

“peeling” of Weil–Petersson random surfaces. Show that in the genus 0 case with n punctures, the peeling

trees labeled by the lengths of the geodesic boundaries converge towards the 3/2-stable growth-fragmentation

tree of [13, 14], see Fig. 9.

Figure 9: Illustration of the peeling of a genus 0 hyperbolic surface with punctures. To reveal the

next pair of pants we trigger a geodesic orthogonal to a boundary component and consider the pair

of pants which contains it (it is well-defined with probability 1 under WP measure).

We expect spectacular applications of the peeling process of Weil–Petersson surfaces. Indeed, such

explorations are flexible in the sense that one can choose (only based on the piece of the surface revealed so

far) the next point on the boundary where to explore the next pair of pants. For example in the planar case,

we hope to use it to prove that the conformal type of the local limit of S0,n (see Project 20) is parabolic12,

see [58, 56] or [33, Chapter 15] for analogous results in random planar map theory. This framework should

also be important to prove:

Project 22 (Weil–Petersson and Liouville quantum gravity). After uniformizing S0,n on S
2
by fixing three

points (at random say), show that the push-forward of the hyperbolic measure is given as n ! 1 by (a

variant) of the

p
8/3-Liouville Quantum Gravity measure, see Fig. 1 (Right).

II.3.3 Back to maps. In this proposal we have encountered many similarities between the theory of

random maps and random WP surfaces: a Schae↵er-type construction, a peeling exploration, the same

(expected) scaling limits in g = 0, same statistics of short curves in high genus [68, 37, 100]... Several other

striking similarities have been noticed in the literature such as the total pants length by Guth & Parlier &

Young [59] which we quote

[59]: “We’re not sure how to phrase this in a precise way, but there does seem to be a strong

analogy between combinatorial surfaces with N triangles and hyperbolic surfaces of genus 4N .”

Project 23. Find a firm link between the geometry of some model of random map and random WP surfaces.

In particular, can one design a natural model of random map whose scaling limit gives a random WP surface?

12equivalently, Brownian motion on this local limit is neighborhood recurrent
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We let  be the moduli space of isometry classes of closed

hyperbolic surfaces with genus  and  punctures.

Hard to understand, usually use Teichmüller space  
(overparametrized)


ℳg,n
g n

𝒯g,n

Down-to-earth:

gluing of hyperbolic pairs of pants

n = 1

g = 3
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We let  be the moduli space of isometry classes of closed

hyperbolic surfaces with genus  and  punctures.

Hard to understand, usually use Teichmüller space  
(overparametrized)


ℳg,n
g n

𝒯g,n
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two parameters Xe > 0 and ✓e 2 R for each edge e of g. The quantities Xe and ✓e are called the Fenchel–

Nielsen coordinates. Then we can glue, according to the combinatorics of g, pairs of pants whose boundary

lengths are prescribed by Xe with twists ✓e to construct a hyperbolic surface. When these coordinates are

taken at random, we shall speak below of random pantalonnade.

Xe

✓e

Figure 8: (Left). Given a trivalent oriented graph (in gray) whose edges are labeled by numbers

X· � 0 and ✓· 2 R, we can form a hyperbolic surface by gluing the corresponding pairs of pants

whose boundary lengths are prescribed by X and twists by ✓. (Right). A realization of the Markov

hyperbolic triangulation of [46].

We used this model of random hyperbolic surface in [27] where the underlying trivalent graph is taken

uniformly at random and the Fenchel–Nielsen coordinates are constant X ⌘ a and ✓ ⌘ 0. Our construction

calls for a natural generalization:

Project 18 (Global geometry of random pantalonnade). Understand global geometric parameters (diameter,

(separating)-systole, Cheeger constant...) of a random pantalonnade as a function of the law of the underlying

random trivalent graph (e.g. uniform) and the law of the Fenchel–Nielsen coordinates (e.g. boundary lengths

i.i.d. with a given law and uniform twists).

As opposed to the above “global” behavior of the surface, when the Fenchel–Nielsen coordinates are

i.i.d. and when the boundary lengths are large, we expect that the injectivity radius10 at a typical point of

the surface (for the hyperbolic measure) tends to 1 in probability. More precisely, the surface decorated by

the non-contractible geodesics around the pants should converge locally in distribution towards the Markov

hyperbolic lamination of the plane that we introduced with the Fields medallist Wendelin Werner ten

years ago (motivated by completely di↵erent considerations!). Heuristically, this is the only (law of a)

tiling of the hyperbolic plane with ideal triangles such that the three connected components outside of a

given triangle are independent, see Fig. 8 right for a simulation. To be precise, we shall root our random

pantalonnades by sampling a uniform point ⇢ according to the (finite) hyperbolic measure and look at the

scenery around ⇢. This is known as the “Benjamini–Schramm convergence” in the context of random graphs

and Riemannian manifolds [10, 1, 2]:

Project 19 (Local geometry of random pantalonnades). Show under mild assumptions (large geodesic

boundaries and i.i.d. uniform twists) that random pantalonnades decorated with the geodesic boundaries

converge in distribution in the Benjamini–Schramm sense towards the Markovian hyperbolic triangulation

of [46].

II.3. Weil–Petersson. A challenging and popular model of random hyperbolic surface is the following.

When 2g � 2 + n > 0, the moduli space Mg,n is equipped with a natural finite measure called the Weil–

Petersson measure and denoted here by WP. After normalization, this measure enables us to sample
10recall that the injectivity radius of a surface S at the point p is the largest radius such that the ball centered around p in

S is isometric to the corresponding ball in hyperbolic space
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We  be a random hyperbolic surface sampled according to 
(normalized) WP measure on 


𝒮g,n
ℳg,n

In high genus as g → ∞

Other works (Guth, Parlier, Young) especially recently on the spectral gap

The random surface  has logarithmic diameter, 

a spectral gap, a positive Cheeger constant…

(non optimal constants)

𝒮g,0

Mirzakhani

+ Set of lengths of primitive closed loops on  

converges in law towards a PPP with intensity

𝒮g,0

Cosh(t) − 1
t

1t>0dt
Petri



Random WP-hyperbolic surfaces

In genus 0 with many punctures we have 
the convergence in distribution

Parking on random trees &
Frozen Erdös-Rényi

Nicolas Curien Université Paris-Saclay and IUF
Based on joint work with Alice Contat

ArXiv:2107.02116

,

T. Budd n−1/4 ⋅ 𝒮0,n ⟶ Brownian Sphere*

As  for the Gromov—Prokhorov distance**n → ∞

Open questions

1. Both V hyp
g,n and N̂(0)

g,n satisfy beautiful topological recursions [Mirzakhani, ’05] [Eynard,

Orantin, ’07] [Norbury, ’08]. Is there a topological recursion for N̂(2b)
g,n or Vmet

g,n ?

2. Is there a bijective explanation for the relation between Vmet
g,n (↵) and V hyp

g,n (L) for
L 2 (0,1)n?

3. The coe�cients of V hyp
g,n store intersection numbers on moduli spaces of curves. Is

the same true for the coe�cients of Vmet
g,n ?

Thanks!

Courtesy of Timothy Budd

Dynamical scaling limit for components
For

m =

�
n
2
+

�
2
· n2/3

⌫
, with � 2 R,

✓
n�2/3 · Cn,⇤ (�)
n�1/3 ·Dn (�)

◆

�2R
���!
n!1

✓
C⇤(�)
D(�)

◆

�2R.
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Figure: A simulation of the processes C ⇤ and D(·) =
R ·
�1 dsC⇤(s).
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Peeling process

Tree bijections



Scaling limit of planar maps with large faces
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Peeling process

Tableau  2: Tutte, Mirzakhani and

Ongoing work with Thomas Budzinski & Bram Petri



Tutte’s equation for triangulations
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𝕋 (p)
0,n = #

p

n{ }
= orn

p

n� 1

p + 1 p1 p2

or n1 n2

p1 + p2 + 2 = p

Recursion on 𝕋 (p)
0,n
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Peeling process

Scaling limit of planar maps with large faces
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Idea: turn Tutte’s equation into a  growth process/
exploration mechanism  of random triangulations.

n

p

n� 1

p + 1

p1 p2

n1 n2

??
?

?
?

?

?

?

?

?

?

???

?
? ?
?

?

?

?

?

?

?
?

?

?

?

?

?

?

?

?

?

?

T(p+1)
0,n�1

T(p)
0,n

T(p1)
0,n1

T(p2)
0,n2

T(p)
0,n

With probab.

With probab.

Key : Different ways to choose 
the next edge to peel (peeling 
algorithm) lead to different 

ways to explore the 
triangulation, hence different 
type of geometric information!
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Peeling process
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n

p

n� 1

p + 1

p1 p2

n1 n2

??
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?
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?

???

?
? ?
?

?

?

?

?

?

?
?

?

?

?

?

?

?

?

?

?

?

T(p+1)
0,n�1

T(p)
0,n

T(p1)
0,n1

T(p2)
0,n2

T(p)
0,n

Applications : 

- Study the volume growth (recovering  diameter)


Angel, C. & Le Gall


- Study the behavior of simple random walk

 Benjamini & C.


- Study Bernoulli percolation

Angel, Angel & C., C. & Richier, Budd & C.

n1/4
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𝕎(ℓ)
0,n = WP( )

Recursion on 𝕎(ℓ)
0,n

`

`1, n1 `2, n2

`, n



Turn Mirzakani’s recursion into peeling
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Develop the peeling process of WP surfaces. In 
genus 0 in particular, connect to the Growth-
Fragmentation trees introduced recently by Bertoin.

Teasing for Budzinski, C., Petri 2022++

ℓØ ℓØ

ℓ1 ℓ2

ℓ22

ℓ221 ℓ222

ℓ1 ℓ2

ℓ22

ℓ221 ℓ222

n3/4

n1/2

Same law of random labeled tree

But different geometric information



There’s something fishy about it, isn’it ?

Geometry of fully parked trees

Theorem (Contat & C.)

E[MeanHeight(PN)] ⇠
N!1

�(3/4)

21/4
p
⇡
· N3/4.

E[TotalFlux(PN)] ⇠
N!1

�(1/4)

25/4
p
⇡
· N5/4.

Conjecture:
✓

PN

N3/4
,
FluxEdges

N1/2

◆
(d)����!

N!1

�
T , (�(x) : x 2 T )

�
,

the (labeled) Growth-Fragmentation tree associated to 3
2 -stable

spectrally negative Lévy process (see Bertoin).
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two parameters Xe > 0 and ✓e 2 R for each edge e of g. The quantities Xe and ✓e are called the Fenchel–

Nielsen coordinates. Then we can glue, according to the combinatorics of g, pairs of pants whose boundary

lengths are prescribed by Xe with twists ✓e to construct a hyperbolic surface. When these coordinates are

taken at random, we shall speak below of random pantalonnade.

Xe

✓e

Figure 8: (Left). Given a trivalent oriented graph (in gray) whose edges are labeled by numbers

X· � 0 and ✓· 2 R, we can form a hyperbolic surface by gluing the corresponding pairs of pants

whose boundary lengths are prescribed by X and twists by ✓. (Right). A realization of the Markov

hyperbolic triangulation of [46].

We used this model of random hyperbolic surface in [27] where the underlying trivalent graph is taken

uniformly at random and the Fenchel–Nielsen coordinates are constant X ⌘ a and ✓ ⌘ 0. Our construction

calls for a natural generalization:

Project 18 (Global geometry of random pantalonnade). Understand global geometric parameters (diameter,

(separating)-systole, Cheeger constant...) of a random pantalonnade as a function of the law of the underlying

random trivalent graph (e.g. uniform) and the law of the Fenchel–Nielsen coordinates (e.g. boundary lengths

i.i.d. with a given law and uniform twists).

As opposed to the above “global” behavior of the surface, when the Fenchel–Nielsen coordinates are

i.i.d. and when the boundary lengths are large, we expect that the injectivity radius10 at a typical point of

the surface (for the hyperbolic measure) tends to 1 in probability. More precisely, the surface decorated by

the non-contractible geodesics around the pants should converge locally in distribution towards the Markov

hyperbolic lamination of the plane that we introduced with the Fields medallist Wendelin Werner ten

years ago (motivated by completely di↵erent considerations!). Heuristically, this is the only (law of a)

tiling of the hyperbolic plane with ideal triangles such that the three connected components outside of a

given triangle are independent, see Fig. 8 right for a simulation. To be precise, we shall root our random

pantalonnades by sampling a uniform point ⇢ according to the (finite) hyperbolic measure and look at the

scenery around ⇢. This is known as the “Benjamini–Schramm convergence” in the context of random graphs

and Riemannian manifolds [10, 1, 2]:

Project 19 (Local geometry of random pantalonnades). Show under mild assumptions (large geodesic

boundaries and i.i.d. uniform twists) that random pantalonnades decorated with the geodesic boundaries

converge in distribution in the Benjamini–Schramm sense towards the Markovian hyperbolic triangulation

of [46].

II.3. Weil–Petersson. A challenging and popular model of random hyperbolic surface is the following.

When 2g � 2 + n > 0, the moduli space Mg,n is equipped with a natural finite measure called the Weil–

Petersson measure and denoted here by WP. After normalization, this measure enables us to sample
10recall that the injectivity radius of a surface S at the point p is the largest radius such that the ball centered around p in

S is isometric to the corresponding ball in hyperbolic space

12

ℝ3g−3 × ℝ3g−3
+ = 𝒯g,n ↠ ℳg,n

Fenchel-Nielsen coordinates

Overparametrized

By imposing geometric constraint on the pant decomposition

(In the case of Mirzakhani, that the pairs of pants are compatible with the launchs of geodesics)


One can choose unique coordinates representing a given 
hyperbolic surface.

Geometry of fully parked trees

Theorem (Contat & C.)

E[MeanHeight(PN)] ⇠
N!1

�(3/4)

21/4
p
⇡
· N3/4.

E[TotalFlux(PN)] ⇠
N!1

�(1/4)

25/4
p
⇡
· N5/4.

Conjecture:
✓

PN

N3/4
,
FluxEdges

N1/2

◆
(d)����!

N!1

�
T , (�(x) : x 2 T )

�
,

the (labeled) Growth-Fragmentation tree associated to 3
2 -stable

spectrally negative Lévy process (see Bertoin).
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Tableau 3: Penner, Schaeffer and

Tree bijections

Ongoing work with Timothy Budd
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Quadrangulation

Encoding via a labeled tree where labels represent 

Distances from the distinguished red point.

Geometry of fully parked trees

Theorem (Contat & C.)

E[MeanHeight(PN)] ⇠
N!1

�(3/4)

21/4
p
⇡
· N3/4.

E[TotalFlux(PN)] ⇠
N!1

�(1/4)

25/4
p
⇡
· N5/4.

Conjecture:
✓

PN

N3/4
,
FluxEdges

N1/2

◆
(d)����!

N!1

�
T , (�(x) : x 2 T )

�
,

the (labeled) Growth-Fragmentation tree associated to 3
2 -stable

spectrally negative Lévy process (see Bertoin).
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Theorem (Contat & C.)

E[MeanHeight(PN)] ⇠
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the (labeled) Growth-Fragmentation tree associated to 3
2 -stable

spectrally negative Lévy process (see Bertoin).
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Schaeffer-type constructionsGeometry of fully parked trees

Theorem (Contat & C.)

E[MeanHeight(PN)] ⇠
N!1

�(3/4)

21/4
p
⇡
· N3/4.

E[TotalFlux(PN)] ⇠
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Conjecture:
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the (labeled) Growth-Fragmentation tree associated to 3
2 -stable

spectrally negative Lévy process (see Bertoin).
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Theorem (Contat & C.)

E[MeanHeight(PN)] ⇠
N!1

�(3/4)

21/4
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⇡
· N3/4.

E[TotalFlux(PN)] ⇠
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the (labeled) Growth-Fragmentation tree associated to 3
2 -stable

spectrally negative Lévy process (see Bertoin).
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Scaling limits of contour and label process of random 
labeled tree -> Le Gall’s Brownian snake

Main ingredient in the proof of the convergence towards 
the Brownian sphere

Chassaing-Schaeffer

Marckert-Mokkadem


Miermont

Le Gall


….

Courtesy of J. Bettinelli

Jean’s Growth-Fragmentation trees



Penner’s decorated Teichmüller theory
h0

h1

h2

�0

�1

�2

Triangulation

(Vertices at cusps)

�i

Triangulation + -lengthsλ

Glue

Decorations « delays » 

on the punctures

Penner’s lambda-lengths

(Can be negative)

Geometry of fully parked trees

Theorem (Contat & C.)

E[MeanHeight(PN)] ⇠
N!1

�(3/4)

21/4
p
⇡
· N3/4.

E[TotalFlux(PN)] ⇠
N!1

�(1/4)

25/4
p
⇡
· N5/4.

Conjecture:
✓

PN

N3/4
,
FluxEdges

N1/2

◆
(d)����!

N!1

�
T , (�(x) : x 2 T )

�
,

the (labeled) Growth-Fragmentation tree associated to 3
2 -stable

spectrally negative Lévy process (see Bertoin).
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Bowditch-Epstein-Penner Voronoï construction

 with  puncturesg = 0 n

Where are the trees in a hyperbolic surface?
I Let Sn 2M00

0,n with two distinguished cusps ?,N and determine cut
locus of ?: points with multiple shortest geodesics to ?.

I Generically a rooted plane binary tree Tn 2 Binn with n � 1 leaves.

Theorem
There exists an open subset M�

0,n ⇢M00
0,n of full WP-measure, such that

M�
0,n

bijection ���!
G

T 2Binn

{(↵i ,�i ) 2 (0,⇡)2n�6 : ↵i + �i > ⇡, ✓ + � > ⇡}.

The WP measures is mapped to Lebesgue: 2n�3d↵1d�1 · · · d↵n�3d�n�3.

Courtesy of T. Budd
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Scaling limit of planar maps with large faces

N. Curien (Université Paris-Saclay)

with G. Miermont (ENS Lyon) and A. Riera (U. Zürich)

OPWS, December 2021
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Bowditch-Epstein-Penner Voronoï construction

 with  puncturesg = 0 n

Proof: an associated ideal triangulation
I The cut locus determines a canonical ideal triangulation of Sn.

I To reglue: need to know position where red arcs meet sides
perpendicularly

 ! angles at vertex.

I Well-defined precisely when sum of opposing angles > ⇡.

I Angles are related to hyperbolic distances `i via sine law:

e`1

sin(2⇡ � ↵1 � �1)
=

e`3

sin↵1

=
e`2

sin�1

I The Weil-Petersson measure is [Penner, ’92]

WP =
1

(n � 3)!

⇣
�2

X

corners

d`i^d`j
⌘n�3

= 2n�3d↵1d�1 · · · d↵n�3d�n�3.

spine/cutlocus

Courtesy of T. Budd

Scaling limit of planar maps with large faces

N. Curien (Université Paris-Saclay)

with G. Miermont (ENS Lyon) and A. Riera (U. Zürich)

OPWS, December 2021
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Bowditch-Epstein-Penner Voronoï construction

 with  puncturesg = 0 n

In Penner’s -lengths, represented as Euclidean trianglesλ

ℓe = eλe/2

Voronoï condition

Jean’s Growth-Fragmentation trees



Back to Schaeffer

Scaling limit of planar maps with large faces

N. Curien (Université Paris-Saclay)

with G. Miermont (ENS Lyon) and A. Riera (U. Zürich)

OPWS, December 2021

Quadrangulation

i i+ 1

i+ 2i+ 1

i i+ 1

ii+ 1

Jean’s Growth-Fragmentation trees



There’s something fishy about it, isn’it ?
Scaling limit of planar maps with large faces

N. Curien (Université Paris-Saclay)

with G. Miermont (ENS Lyon) and A. Riera (U. Zürich)

OPWS, December 2021

Let None But Geometers Enter Here

Thanks !

https://en.wikipedia.org/wiki/Geometer

