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Nash-Kuiper Theorem

An isometric map

−→
Lengths are preserved by the

map.

A non-isometric map

−→
At the left, the blue and the

orange curves have the same

length. This is no longer the

case at the right.
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Nash-Kuiper Theorem

De�nition

Let f : ([0, 1]m, g)→ (Rn, 〈·, ·〉), with g a metric. The map f is isometric

if, for any curve γ in [0, 1]m, we have

lengthg (γ) = length〈·,·〉(f ◦ γ)

f

or, equivalently, if g = f ∗〈·, ·〉.

Theorem (Hilbert, 1901 - E�mov, 1964)

There is no C 2-isometric immersion of H2 in (R3, 〈·, ·〉).
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Nash-Kuiper Theorem

Nash-Kuiper C 1-isometric embedding Theorem, 1954-55
If there exists f0 : ([0, 1]m, g)→ (Rm+1, 〈·, ·〉) a C∞ strictly short

embedding, ie g − f ∗
0
〈·, ·〉 > 0,

f�

then there exists C 1-isometric embeddings f : ([0, 1]m, g)→ (Rm+1, 〈·, ·〉).

f

Corollary (Kuiper, 1955)
There exists C 1-isometric embeddings of H2 in (R3, 〈·, ·〉).
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Idea of the construction

Main tool: a corrugation formula

f1(x) := f0(x) +
1

k
r

[ ∫ Nxj
0

cos(a cos(2πu))− J0(a)duT(x)

+
∫ Nxj
0

sin(a cos(2πu))duN(x)

]

with T a unit tangent vector, N a unit normal vector, r , a ∈ R, k ∈ N, and
J0(a) =

∫
1

0
cos(a cos(2πu))du.

Properties
If for any x ∈ [0, 1]m we have ∂j f0(x) = rJ0(a)T(x), then:

� ‖f1 − f0‖C0 = O(1/k)

� ‖∂j f1‖Rn =r+O(1/k)

� ‖∂i f1 − ∂i f0‖C0 = O(1/k), for any i 6= j
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Idea of the construction

- Input - - Iteration - - Output -

‖f ′0‖2 ≡ 1/2
‖f ′

1
‖2 ≡ 3/4,

‖f ′
2
‖2 ≡ 7/8, ...

at the tlimit, ‖f ′∞‖2 ≡ 1
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Idea of the construction

Strategy for a surface (torus case)

Input. Let f0 : ([0, 1]2, g)→ (R3, 〈·, ·〉), with g the usual euclidean metric,

be a short map.

The isometric default. We have

∆ := g − f ∗0 〈·, ·〉 > 0

=
(
dx2 + dy2

)
−
(
Edx2 + 2Fdxdy + Gdy2

)
We decompose ∆ as a sum of squares of linear forms:

∆ = ρ1dx
2 + ρ2

( 1√
5

(dx + 2dy)
)2

+ ρ3

( 1√
5

(dx − 2dy)
)2

-> Note that the choice of directions is not unique.
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Idea of the construction

Main Step. We reduce by 2 the isometric default adding corrugations in

three directions

∂x
1√
5

(∂x + 2∂y ) 1√
5

(∂x − 2∂y )

Output. At the limit, we have

corrug .−→ corrug .−→ ...
corrug .−→

and at the limit the isometric default

1

2j
∆ −→

j→+∞
0
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Idea of the construction

Poincaré disk case

Let

f0 : (]0, 1]× [0, 2π[, h) −→ (R3, 〈·, ·〉)

(ρ, θ) 7−→ 2(ρ cos θ, ρ sin θ,
√
2

2
ρ2)

where h = 4

(1−ρ2)2 (dρ2 + ρ2dθ2) is the Poincaré metric.

First step. We consider the isometric default ∆ = h − f ∗
0
〈·, ·〉, we divise it

by 2 to have the length of the �rst corrugation and...

But h 9
ρ→1

∞ on the edge of the disk and ∆ 9
ρ→1

∞ too! Fail!
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Idea of the construction

Next try. Let ∆j be the truncated Taylor series of ∆ = h − f ∗
0
〈·, ·〉.

At each step we increase the length until ∆j (which is bounded).

With these choices, we can prove the C 1-convergence so, at the end, we
obtain a C 1-isometric embedding of H2.
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Some pictures

(pictures made by Roland Denis of the Hevea team)
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Some pictures
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Some pictures

The analytic expression of the "edge curve" is similar to a lacunar Fourier

series.
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The limit set

De�nition

Let M be a non-compact manifold and f : M → Rn be a map.

Let (xk)k be a divergent sequence of points of M. If the sequence (f (xk))k
converges in Rn, its limit is called a limit point of f . The set of limit points

is denoted by L(f ).

Theorem (Borrelli-Lazarus-T.-Thibert)

The previous construction is a C 1-isometric embedding of H2 and its limit

set L(f ) is a curve of Hausdor� dimension 1.

Question: By modifying parameters of the construction (initial map, way

to reduce the isometric default, ...), what can we have as limit set ?
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The limit set

Theorem (De Lellis, 2017)

Let f0 : (M, g)→ En be a strictly short embedding, then there exists a

C 1-isometric embedding f : (M, g)→ En with the same limit set

L(f ) = L(f0)

An amazing corollary

Let's imagine a short embedding f0 of the hyperbolic plane such that

L(f0) is reduced to a point.

Then there exists a C 1-isometric embedding f of H2 such that

f (H2) ∪ L(f ) is homeomorphic to a sphere, so a hyperbolic sphere.
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The limit set

Theorem (Borrelli-Lazarus-T.-Thibert)

Let Γ be any smooth immersed closed curve in E3, then there exists a C 1

isometric immersion of f : H2 → E3 whose limit set L(f ) is Γ.

Remark 1. Circles in H2 can be chosen with an arbitrarily large perimeter,

however the length of L(f ) is �nite: the length map is lower

semi-continuous.

Remark 2. Any point of L(f ) is at in�nite distance of any points of the

surface for the induced distance of E3.
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The limit set

Theorem (Borrelli-Lazarus-T.-Thibert)

Let Γ be any planar Jordan curve, then there exists a C 1 isometric

immersion of f : H2 → E3 whose limit set L(f ) is Γ.

The Koch snow�ake is a Jordan curve.
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Thanks for your attention!
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