

Mélanie Theillière, University of Luxembourg joint work with V. Borrelli, R. Denis, F. Lazarus, B. Thibert

Nash-Kuiper Theorem

An isometric map

Lengths are preserved by the map.

Nash-Kuiper Theorem

An isometric map

Lengths are preserved by the map.

A non-isometric map

At the left, the blue and the orange curves have the same length. This is no longer the case at the right.

Nash-Kuiper Theorem

Definition

Let $f:\left([0,1]^{m}, g\right) \rightarrow\left(\mathbb{R}^{n},\langle\cdot \cdot \cdot\rangle\right)$, with g a metric. The map f is isometric if, for any curve γ in $[0,1]^{m}$, we have

$$
\text { length }_{g}(\gamma)=\text { length }_{(\cdot, \gamma}(f \circ \gamma)
$$

or, equivalently, if $g=f^{*}\langle\cdot, \cdot\rangle$.

Nash-Kuiper Theorem

Definition

Let $f:\left([0,1]^{m}, g\right) \rightarrow\left(\mathbb{R}^{n},\langle\cdot, \cdot\rangle\right)$, with g a metric. The map f is isometric if, for any curve γ in $[0,1]^{m}$, we have

$$
\text { length }_{g}(\gamma)=\operatorname{length}_{(\cdot, \gamma)}(f \circ \gamma)
$$

or, equivalently, if $g=f^{*}\langle\cdot, \cdot\rangle$.
Theorem (Hilbert, 1901 - Efimov, 1964)
There is no C^{2}-isometric immersion of \mathbb{H}^{2} in $\left(\mathbb{R}^{3},\langle\cdot, \cdot\rangle\right)$.

Nash-Kuiper Theorem

Nash-Kuiper C^{1}-isometric embedding Theorem, 1954-55

If there exists $f_{0}:\left([0,1]^{m}, g\right) \rightarrow\left(\mathbb{R}^{m+1},\langle\cdot, \cdot\rangle\right)$ a C^{∞} strictly short embedding, ie $\left.g-f_{0}^{*}\langle\cdot, \cdot\rangle\right\rangle 0$,

then there exists C^{1}-isometric embeddings $f:\left([0,1]^{m}, g\right) \rightarrow\left(\mathbb{R}^{m+1},\langle\cdot, \cdot\rangle\right)$.

Nash-Kuiper Theorem

Nash-Kuiper C^{1}-isometric embedding Theorem, 1954-55 If there exists $f_{0}:\left([0,1]^{m}, g\right) \rightarrow\left(\mathbb{R}^{m+1},\langle\cdot, \cdot\rangle\right)$ a C^{∞} strictly short embedding, ie $\left.g-f_{0}^{*}\langle\cdot, \cdot\rangle\right\rangle 0$,

then there exists C^{1}-isometric embeddings $f:\left([0,1]^{m}, g\right) \rightarrow\left(\mathbb{R}^{m+1},\langle\cdot, \cdot\rangle\right)$.

Corollary (Kuiper, 1955)

There exists C^{1}-isometric embeddings of \mathbb{H}^{2} in $\left(\mathbb{R}^{3},\langle\cdot, \cdot\rangle\right)$.

Idea of the construction

Main tool: a corrugation formula

$f_{1}(x):=f_{0}(x)+\frac{1}{k} r\left[\begin{array}{c}\int_{0}^{N x_{j}} \cos (a \cos (2 \pi u))-J_{0}(a) d u \boldsymbol{T}(x) \\ +\int_{0}^{N x_{j}} \sin (a \cos (2 \pi u)) d u \mathbf{N}(x)\end{array}\right] \square$
with \mathbf{T} a unit tangent vector, N a unit normal vector, $r, a \in \mathbb{R}, k \in \mathbb{N}$, and $J_{0}(a)=\int_{0}^{1} \cos (a \cos (2 \pi u)) d u$.

Idea of the construction

Main tool: a corrugation formula

$f_{1}(x):=f_{0}(x)+\frac{1}{k} r\left[\begin{array}{c}\int_{0}^{N x_{j}} \cos (a \cos (2 \pi u))-J_{0}(a) d u \boldsymbol{T}(x) \\ +\int_{0}^{N x_{j}} \sin (a \cos (2 \pi u)) d u \mathbf{N}(x)\end{array}\right] \square$
with \mathbf{T} a unit tangent vector, N a unit normal vector, $r, a \in \mathbb{R}, k \in \mathbb{N}$, and $J_{0}(a)=\int_{0}^{1} \cos (a \cos (2 \pi u)) d u$.

Properties

If for any $x \in[0,1]^{m}$ we have $\partial_{j} f_{0}(x)=r J_{0}(a) \boldsymbol{T}(x)$, then:

- $\left\|f_{1}-f_{0}\right\|_{C^{0}}=O(1 / k)$
- $\left\|\partial_{j} f_{1}\right\|_{\mathbb{R}^{n}}=r+O(1 / k)$
- $\left\|\partial_{i} f_{1}-\partial_{i} f_{0}\right\|_{C^{0}}=O(1 / k)$, for any $i \neq j$

Idea of the construction

- Input -

$\left\|f_{0}^{\prime}\right\|^{2} \equiv 1 / 2$

$$
\begin{aligned}
& \left\|f_{1}^{\prime}\right\|^{2} \equiv 3 / 4, \\
& \left\|f_{2}^{\prime}\right\|^{2} \equiv 7 / 8, \ldots
\end{aligned}
$$

at the tlimit, $\left\|f_{\infty}^{\prime}\right\|^{2} \equiv 1$

Idea of the construction

Strategy for a surface (torus case)

Input. Let $f_{0}:\left([0,1]^{2}, g\right) \rightarrow\left(\mathbb{R}^{3},\langle\cdot, \cdot\rangle\right)$, with g the usual euclidean metric, be a short map.

Idea of the construction

Strategy for a surface (torus case)

Input. Let $f_{0}:\left([0,1]^{2}, g\right) \rightarrow\left(\mathbb{R}^{3},\langle\cdot, \cdot\rangle\right)$, with g the usual euclidean metric, be a short map.

The isometric default. We have

$$
\left.\Delta:=g-f_{0}^{*}\langle\cdot, \cdot\rangle\right\rangle 0
$$

Idea of the construction

Strategy for a surface (torus case)

Input. Let $f_{0}:\left([0,1]^{2}, g\right) \rightarrow\left(\mathbb{R}^{3},\langle\cdot, \cdot\rangle\right)$, with g the usual euclidean metric, be a short map.

The isometric default. We have

$$
\begin{aligned}
\Delta & :=g-f_{0}^{*}\langle\cdot, \cdot\rangle>0 \\
& =\left(\mathrm{d} x^{2}+\mathrm{d} y^{2}\right)-\left(E \mathrm{~d} x^{2}+2 F \mathrm{~d} x \mathrm{~d} y+G \mathrm{~d} y^{2}\right)
\end{aligned}
$$

Idea of the construction

Strategy for a surface (torus case)

Input. Let $f_{0}:\left([0,1]^{2}, g\right) \rightarrow\left(\mathbb{R}^{3},\langle\cdot, \cdot\rangle\right)$, with g the usual euclidean metric, be a short map.

The isometric default. We have

$$
\begin{aligned}
\Delta & :=g-f_{0}^{*}\langle\cdot, \cdot\rangle>0 \\
& =\left(\mathrm{d} x^{2}+\mathrm{d} y^{2}\right)-\left(E \mathrm{~d} x^{2}+2 F \mathrm{~d} x \mathrm{~d} y+G \mathrm{~d} y^{2}\right)
\end{aligned}
$$

We decompose Δ as a sum of squares of linear forms:

$$
\Delta=\rho_{1} \mathrm{~d} x^{2}+\rho_{2}\left(\frac{1}{\sqrt{5}}(\mathrm{~d} x+2 \mathrm{~d} y)\right)^{2}+\rho_{3}\left(\frac{1}{\sqrt{5}}(\mathrm{~d} x-2 \mathrm{~d} y)\right)^{2}
$$

Idea of the construction

Strategy for a surface (torus case)

Input. Let $f_{0}:\left([0,1]^{2}, g\right) \rightarrow\left(\mathbb{R}^{3},\langle\cdot, \cdot\rangle\right)$, with g the usual euclidean metric, be a short map.

The isometric default. We have

$$
\begin{aligned}
\Delta & :=g-f_{0}^{*}\langle\cdot, \cdot\rangle>0 \\
& =\left(\mathrm{d} x^{2}+\mathrm{d} y^{2}\right)-\left(E \mathrm{~d} x^{2}+2 F \mathrm{~d} x \mathrm{~d} y+G \mathrm{~d} y^{2}\right)
\end{aligned}
$$

We decompose Δ as a sum of squares of linear forms:

$$
\Delta=\rho_{1} \mathrm{~d} x^{2}+\rho_{2}\left(\frac{1}{\sqrt{5}}(\mathrm{~d} x+2 \mathrm{~d} y)\right)^{2}+\rho_{3}\left(\frac{1}{\sqrt{5}}(\mathrm{~d} x-2 \mathrm{~d} y)\right)^{2}
$$

$->$ Note that the choice of directions is not unique.

Idea of the construction

Main Step. We reduce by 2 the isometric default adding corrugations in three directions

∂_{x}

$\frac{1}{\sqrt{5}}\left(\partial_{x}+2 \partial_{y}\right)$

$\frac{1}{\sqrt{5}}\left(\partial_{x}-2 \partial_{y}\right)$

Idea of the construction

Main Step. We reduce by 2 the isometric default adding corrugations in three directions

∂_{x}

$$
\frac{1}{\sqrt{5}}\left(\partial_{x}+2 \partial_{y}\right)
$$

$\frac{1}{\sqrt{5}}\left(\partial_{x}-2 \partial_{y}\right)$

Output. At the limit, we have

and at the limit the isometric default

$$
\frac{1}{2^{j}} \Delta \underset{j \rightarrow+\infty}{\longrightarrow} 0
$$

Idea of the construction

Poincaré disk case

Let

$$
\begin{array}{rlc}
\left.f_{0}: \quad(] 0,1\right] \times[0,2 \pi[, h) & \longrightarrow & \left(\mathbb{R}^{3},\langle\cdot, \cdot\rangle\right) \\
(\rho, \theta) & \longmapsto & 2\left(\rho \cos \theta, \rho \sin \theta, \frac{\sqrt{2}}{2} \rho^{2}\right)
\end{array}
$$

where $h=\frac{4}{\left(1-\rho^{2}\right)^{2}}\left(d \rho^{2}+\rho^{2} d \theta^{2}\right)$ is the Poincaré metric.

Idea of the construction

Poincaré disk case

Let

$$
\begin{array}{ccc}
\left.f_{0}: \quad(] 0,1\right] \times[0,2 \pi[, h) & \longrightarrow & \left(\mathbb{R}^{3},\langle\cdot, \cdot\rangle\right) \\
(\rho, \theta) & \longmapsto & 2\left(\rho \cos \theta, \rho \sin \theta, \frac{\sqrt{2}}{2} \rho^{2}\right)
\end{array}
$$

where $h=\frac{4}{\left(1-\rho^{2}\right)^{2}}\left(d \rho^{2}+\rho^{2} d \theta^{2}\right)$ is the Poincaré metric.

First step. We consider the isometric default $\Delta=h-f_{0}^{*}\langle\cdot, \cdot\rangle$, we divise it by 2 to have the length of the first corrugation and...

Idea of the construction

Poincaré disk case

Let

$$
\begin{array}{ccc}
\left.f_{0}: \quad(] 0,1\right] \times[0,2 \pi[, h) & \longrightarrow & \left(\mathbb{R}^{3},\langle\cdot, \cdot\rangle\right) \\
(\rho, \theta) & \longmapsto & 2\left(\rho \cos \theta, \rho \sin \theta, \frac{\sqrt{2}}{2} \rho^{2}\right)
\end{array}
$$

where $h=\frac{4}{\left(1-\rho^{2}\right)^{2}}\left(d \rho^{2}+\rho^{2} d \theta^{2}\right)$ is the Poincaré metric.

First step. We consider the isometric default $\Delta=h-f_{0}^{*}\langle\cdot, \cdot\rangle$, we divise it by 2 to have the length of the first corrugation and...

But $h \underset{\rho \rightarrow 1}{\rightarrow \rightarrow} \infty$ on the edge of the disk and $\Delta \underset{\rho \rightarrow 1}{\rightarrow} \infty$ too! Fail!

Idea of the construction

Next try. Let Δ_{j} be the truncated Taylor series of $\Delta=h-f_{0}^{*}\langle\cdot, \cdot\rangle$.

Idea of the construction

Next try. Let Δ_{j} be the truncated Taylor series of $\Delta=h-f_{0}^{*}\langle\cdot, \cdot\rangle$.
At each step we increase the length until \triangle_{j} (which is bounded).

Idea of the construction

Next try. Let \triangle_{j} be the truncated Taylor series of $\Delta=h-f_{0}^{*}\langle\cdot, \cdot\rangle$.
At each step we increase the length until \triangle_{j} (which is bounded).
With these choices, we can prove the C^{1}-convergence so, at the end, we obtain a C^{1}-isometric embedding of \mathbb{H}^{2}.

Some pictures

(pictures made by Roland Denis of the Hevea team)

Some pictures

The analytic expression of the "edge curve" is similar to a lacunar Fourier series.

The limit set

Definition

Let M be a non-compact manifold and $f: M \rightarrow \mathbb{R}^{n}$ be a map. Let $\left(x_{k}\right)_{k}$ be a divergent sequence of points of M. If the sequence $\left(f\left(x_{k}\right)\right)_{k}$ converges in \mathbb{R}^{n}, its limit is called a limit point of f. The set of limit points is denoted by $L(f)$.

The limit set

Definition

Let M be a non-compact manifold and $f: M \rightarrow \mathbb{R}^{n}$ be a map. Let $\left(x_{k}\right)_{k}$ be a divergent sequence of points of M. If the sequence $\left(f\left(x_{k}\right)\right)_{k}$ converges in \mathbb{R}^{n}, its limit is called a limit point of f. The set of limit points is denoted by $L(f)$.

Theorem (Borrelli-Lazarus-T.-Thibert)

The previous construction is a C^{1}-isometric embedding of \mathbb{H}^{2} and its limit set $L(f)$ is a curve of Hausdorff dimension 1.

The limit set

Definition

Let M be a non-compact manifold and $f: M \rightarrow \mathbb{R}^{n}$ be a map. Let $\left(x_{k}\right)_{k}$ be a divergent sequence of points of M. If the sequence $\left(f\left(x_{k}\right)\right)_{k}$ converges in \mathbb{R}^{n}, its limit is called a limit point of f. The set of limit points is denoted by $L(f)$.

Theorem (Borrelli-Lazarus-T.-Thibert)

The previous construction is a C^{1}-isometric embedding of \mathbb{H}^{2} and its limit set $L(f)$ is a curve of Hausdorff dimension 1.

Question: By modifying parameters of the construction (initial map, way to reduce the isometric default, ...), what can we have as limit set ?

The limit set

Theorem (De Lellis, 2017)

Let $f_{0}:(M, g) \rightarrow \mathbb{E}^{n}$ be a strictly short embedding, then there exists a C^{1}-isometric embedding $f:(M, g) \rightarrow \mathbb{E}^{n}$ with the same limit set

$$
L(f)=L\left(f_{0}\right)
$$

The limit set

Theorem (De Lellis, 2017)

Let $f_{0}:(M, g) \rightarrow \mathbb{E}^{n}$ be a strictly short embedding, then there exists a C^{1}-isometric embedding $f:(M, g) \rightarrow \mathbb{E}^{n}$ with the same limit set

$$
L(f)=L\left(f_{0}\right)
$$

An amazing corollary

Let's imagine a short embedding f_{0} of the hyperbolic plane such that

$$
L\left(f_{0}\right) \text { is reduced to a point. }
$$

Then there exists a C^{1}-isometric embedding f of \mathbb{H}^{2} such that $f\left(\mathbb{H}^{2}\right) \cup L(f)$ is homeomorphic to a sphere, so a hyperbolic sphere.

The limit set

Theorem (Borrelli-Lazarus-T.-Thibert)

Let Γ be any smooth immersed closed curve in \mathbb{E}^{3}, then there exists a C^{1} isometric immersion of $f: \mathbb{H}^{2} \rightarrow \mathbb{E}^{3}$ whose limit set $L(f)$ is Γ.

The limit set

Theorem (Borrelli-Lazarus-T.-Thibert)

Let Γ be any smooth immersed closed curve in \mathbb{E}^{3}, then there exists a C^{1} isometric immersion of $f: \mathbb{H}^{2} \rightarrow \mathbb{E}^{3}$ whose limit set $L(f)$ is Γ.

Remark 1. Circles in \mathbb{H}^{2} can be chosen with an arbitrarily large perimeter, however the length of $L(f)$ is finite: the length map is lower semi-continuous.

The limit set

Theorem (Borrelli-Lazarus-T.-Thibert)

Let Γ be any smooth immersed closed curve in \mathbb{E}^{3}, then there exists a C^{1} isometric immersion of $f: \mathbb{H}^{2} \rightarrow \mathbb{E}^{3}$ whose limit set $L(f)$ is Γ.

Remark 1. Circles in \mathbb{H}^{2} can be chosen with an arbitrarily large perimeter, however the length of $L(f)$ is finite: the length map is lower semi-continuous.

Remark 2. Any point of $L(f)$ is at infinite distance of any points of the surface for the induced distance of \mathbb{E}^{3}.

The limit set

Theorem (Borrelli-Lazarus-T.-Thibert)

Let Γ be any planar Jordan curve, then there exists a C^{1} isometric immersion of $f: \mathbb{H}^{2} \rightarrow \mathbb{E}^{3}$ whose limit set $L(f)$ is Γ.

Thanks for your attention!

