A C^1 -isometric embedding of the hyperbolic plane and its limit set

Mélanie Theillière, University of Luxembourg joint work with V. Borrelli, R. Denis, F. Lazarus, B. Thibert

Mélanie Theillière

Structures on Surfaces, CIRM

2-6 May 2022 1/23

Lengths are preserved by the map.

Mélanie Theillière

Structures on Surfaces, CIRM

2-6 May 2022 2/23

Lengths are preserved by the map.

A non-isometric map

At the left, the blue and the orange curves have the same length. This is no longer the case at the right.

Definition

Let $f: ([0,1]^m, g) \to (\mathbb{R}^n, \langle \cdot, \cdot \rangle)$, with g a metric. The map f is isometric if, for any curve γ in $[0,1]^m$, we have

$${\sf length}_g(\gamma) = {\sf length}_{\langle \cdot, \cdot
angle}(f \circ \gamma)$$

or, equivalently, if $g=f^*\langle\cdot,\cdot
angle.$

Definition

Let $f: ([0,1]^m, g) \to (\mathbb{R}^n, \langle \cdot, \cdot \rangle)$, with g a metric. The map f is isometric if, for any curve γ in $[0,1]^m$, we have

$${\sf length}_g(\gamma) = {\sf length}_{\langle \cdot, \cdot
angle}(f \circ \gamma)$$

or, equivalently, if $g=f^*\langle\cdot,\cdot
angle.$

Theorem (Hilbert, 1901 - Efimov, 1964)

There is no C^2 -isometric immersion of \mathbb{H}^2 in $(\mathbb{R}^3, \langle \cdot, \cdot \rangle)$.

Mélanie Theillière

Nash-Kuiper C^1 -isometric embedding Theorem, 1954-55 If there exists $f_0: ([0,1]^m,g) \to (\mathbb{R}^{m+1}, \langle \cdot, \cdot \rangle)$ a C^{∞} strictly short embedding, ie $g - f_0^* \langle \cdot, \cdot \rangle > 0$,

then there exists C^1 -isometric embeddings $f:([0,1]^m,g) o (\mathbb{R}^{m+1},\langle\cdot,\cdot\rangle).$

Nash-Kuiper C^1 -isometric embedding Theorem, 1954-55 If there exists $f_0: ([0,1]^m,g) \to (\mathbb{R}^{m+1}, \langle \cdot, \cdot \rangle)$ a C^{∞} strictly short embedding, ie $g - f_0^* \langle \cdot, \cdot \rangle > 0$,

then there exists C^1 -isometric embeddings $f: ([0,1]^m,g) \to (\mathbb{R}^{m+1},\langle\cdot,\cdot\rangle).$

Corollary (Kuiper, 1955) There exists C^1 -isometric embeddings of \mathbb{H}^2 in $(\mathbb{R}^3, \langle \cdot, \cdot \rangle)$.

Main tool: a corrugation formula

$$f_{1}(x) := f_{0}(x) + \frac{1}{k}r \left[\begin{array}{c} \int_{0}^{N_{x_{j}}} \cos(a\cos(2\pi u)) - J_{0}(a)du \,\mathsf{T}(x) \\ + \int_{0}^{N_{x_{j}}} \sin(a\cos(2\pi u))du \,\mathsf{N}(x) \end{array} \right]$$

with **T** a unit tangent vector, **N** a unit normal vector, $r, a \in \mathbb{R}$, $k \in \mathbb{N}$, and $J_0(a) = \int_0^1 \cos(a\cos(2\pi u)) du$.

Main tool: a corrugation formula

$$f_{1}(x) := f_{0}(x) + \frac{1}{k}r \left[\begin{array}{c} \int_{0}^{N_{x_{j}}} \cos(a\cos(2\pi u)) - J_{0}(a)du \, \mathsf{T}(x) \\ + \int_{0}^{N_{x_{j}}} \sin(a\cos(2\pi u))du \, \mathsf{N}(x) \end{array} \right]$$

with **T** a unit tangent vector, **N** a unit normal vector, $r, a \in \mathbb{R}$, $k \in \mathbb{N}$, and $J_0(a) = \int_0^1 \cos(a\cos(2\pi u)) du$.

Properties

If for any $x \in [0,1]^m$ we have $\partial_j f_0(x) = r J_0(a) \mathsf{T}(x)$, then:

- $||f_1 f_0||_{C^0} = O(1/k)$
- $\|\partial_j f_1\|_{\mathbb{R}^n} = \mathbf{r} + O(1/k)$

•
$$\|\partial_i f_1 - \partial_i f_0\|_{C^0} = O(1/k)$$
, for any $i \neq j$

$$\|f_0'\|^2 \equiv 1/2$$

Mélanie Theillière

$$\|f_1'\|^2 \equiv 3/4, \ \|f_2'\|^2 \equiv 7/8, \dots$$

Structures on Surfaces, CIRM

at the tlimit, $\|f'_\infty\|^2\equiv 1$

2-6 May 2022 6/23

Input. Let $f_0: ([0,1]^2,g) \to (\mathbb{R}^3, \langle \cdot, \cdot \rangle)$, with g the usual euclidean metric, be a short map.

Input. Let $f_0: ([0,1]^2, g) \to (\mathbb{R}^3, \langle \cdot, \cdot \rangle)$, with g the usual euclidean metric, be a short map.

The isometric default. We have

$$\Delta := g - f_0^* \langle \cdot, \cdot \rangle > 0$$

Input. Let $f_0: ([0,1]^2,g) \to (\mathbb{R}^3, \langle \cdot, \cdot \rangle)$, with g the usual euclidean metric, be a short map.

The isometric default. We have

$$\begin{array}{lll} \Delta & := & g - f_0^* \langle \cdot, \cdot \rangle > 0 \\ & = & \left(\mathrm{d} x^2 + \mathrm{d} y^2 \right) - \left(E \mathrm{d} x^2 + 2F \mathrm{d} x \mathrm{d} y + G \mathrm{d} y^2 \right) \end{array}$$

Input. Let
$$f_0:([0,1]^2,g) o (\mathbb{R}^3,\langle\cdot,\cdot
angle)$$
, with g the usual euclidean metric, be a short map.

The isometric default. We have

$$\begin{array}{lll} \Delta & := & g - f_0^* \langle \cdot, \cdot \rangle > 0 \\ & = & \left(\mathrm{d} x^2 + \mathrm{d} y^2 \right) - \left(E \mathrm{d} x^2 + 2F \mathrm{d} x \mathrm{d} y + G \mathrm{d} y^2 \right) \end{array}$$

We decompose Δ as a sum of squares of linear forms:

$$\Delta = \rho_1 \mathrm{d}x^2 + \rho_2 \left(\frac{1}{\sqrt{5}}(\mathrm{d}x + 2\mathrm{d}y)\right)^2 + \rho_3 \left(\frac{1}{\sqrt{5}}(\mathrm{d}x - 2\mathrm{d}y)\right)^2$$

Mélanie Theillière

Input. Let $f_0 : ([0,1]^2, g) \to (\mathbb{R}^3, \langle \cdot, \cdot \rangle)$, with g the usual euclidean metric, be a short map.

The isometric default. We have

$$\begin{array}{lll} \Delta & := & g - f_0^* \langle \cdot, \cdot \rangle > 0 \\ & = & \left(\mathrm{d} x^2 + \mathrm{d} y^2 \right) - \left(E \mathrm{d} x^2 + 2F \mathrm{d} x \mathrm{d} y + G \mathrm{d} y^2 \right) \end{array}$$

We decompose Δ as a sum of squares of linear forms:

$$\Delta = \rho_1 \mathrm{d}x^2 + \rho_2 \Big(\frac{1}{\sqrt{5}} (\mathrm{d}x + 2\mathrm{d}y)\Big)^2 + \rho_3 \Big(\frac{1}{\sqrt{5}} (\mathrm{d}x - 2\mathrm{d}y)\Big)^2$$

-> Note that the choice of directions is not unique.

Mélanie Theillière

Main Step. We reduce by 2 the isometric default adding corrugations in three directions

Mélanie Theillière

Main Step. We reduce by 2 the isometric default adding corrugations in three directions

 $\frac{1}{\sqrt{5}}(\partial_x + 2\partial_y)$

 $\frac{1}{\sqrt{5}}(\partial_x - 2\partial_y)$

Output. At the limit, we have

and at the limit the isometric default

$$rac{1}{2^j}\Delta \quad \stackrel{}{\longrightarrow} 0$$

Mélanie Theillière

Poincaré disk case

Let

 $\begin{array}{rcl} f_0: & (]0,1] \times [0,2\pi[, h) & \longrightarrow & (\mathbb{R}^3, \langle \cdot, \cdot \rangle) \\ & & (\rho, \theta) & \longmapsto & 2(\rho \cos \theta, \rho \sin \theta, \frac{\sqrt{2}}{2}\rho^2) \end{array}$

where $h = \frac{4}{(1-\rho^2)^2} (d\rho^2 + \rho^2 d\theta^2)$ is the Poincaré metric.

Poincaré disk case

Let

 $\begin{array}{rcl} f_{0}: & (]0,1] \times [0,2\pi[, h) & \longrightarrow & (\mathbb{R}^{3}, \langle \cdot, \cdot \rangle) \\ & & (\rho, \theta) & \longmapsto & 2(\rho \cos \theta, \rho \sin \theta, \frac{\sqrt{2}}{2}\rho^{2}) \end{array}$

where $h = \frac{4}{(1ho^2)^2} (d
ho^2 +
ho^2 d heta^2)$ is the Poincaré metric.

First step. We consider the isometric default $\Delta = h - f_0^* \langle \cdot, \cdot \rangle$, we divise it by 2 to have the length of the first corrugation and...

Poincaré disk case

Let

 $\begin{array}{rcl} f_0: & (]0,1] \times [0,2\pi[, h) & \longrightarrow & (\mathbb{R}^3, \langle \cdot, \cdot \rangle) \\ & & (\rho, \theta) & \longmapsto & 2(\rho \cos \theta, \rho \sin \theta, \frac{\sqrt{2}}{2}\rho^2) \end{array}$

where $h = \frac{4}{(1-\rho^2)^2} (d\rho^2 + \rho^2 d\theta^2)$ is the Poincaré metric.

First step. We consider the isometric default $\Delta = h - f_0^* \langle \cdot, \cdot \rangle$, we divise it by 2 to have the length of the first corrugation and...

But $h \xrightarrow[\rho \to 1]{} \infty$ on the edge of the disk and $\Delta \xrightarrow[\rho \to 1]{} \infty$ too! Fail!

Mélanie Theillière

Next try. Let Δ_j be the truncated Taylor series of $\Delta = h - f_0^* \langle \cdot, \cdot \rangle$.

Next try. Let Δ_j be the truncated Taylor series of $\Delta = h - f_0^* \langle \cdot, \cdot \rangle$.

At each step we increase the length until Δ_i (which is bounded).

Next try. Let Δ_j be the truncated Taylor series of $\Delta = h - f_0^* \langle \cdot, \cdot \rangle$.

At each step we increase the length until Δ_i (which is bounded).

With these choices, we can prove the C^1 -convergence so, at the end, we obtain a C^1 -isometric embedding of \mathbb{H}^2 .

(pictures made by Roland Denis of the Hevea team)

Mélanie Theillière

Structures on Surfaces, CIRM

2-6 May 2022 11/23

Mélanie Theillière

Structures on Surfaces, CIRM

2-6 May 2022 12/23

Mélanie Theillière

The analytic expression of the "edge curve" is similar to a lacunar Fourier series.

Mélanie Theillière

Definition

Let M be a non-compact manifold and $f : M \to \mathbb{R}^n$ be a map. Let $(x_k)_k$ be a divergent sequence of points of M. If the sequence $(f(x_k))_k$ converges in \mathbb{R}^n , its limit is called a limit point of f. The set of limit points is denoted by L(f).

Definition

Let M be a non-compact manifold and $f : M \to \mathbb{R}^n$ be a map. Let $(x_k)_k$ be a divergent sequence of points of M. If the sequence $(f(x_k))_k$ converges in \mathbb{R}^n , its limit is called a limit point of f. The set of limit points is denoted by L(f).

Theorem (Borrelli-Lazarus-T.-Thibert)

The previous construction is a C^1 -isometric embedding of \mathbb{H}^2 and its limit set L(f) is a curve of Hausdorff dimension 1.

Definition

Let M be a non-compact manifold and $f : M \to \mathbb{R}^n$ be a map. Let $(x_k)_k$ be a divergent sequence of points of M. If the sequence $(f(x_k))_k$ converges in \mathbb{R}^n , its limit is called a limit point of f. The set of limit points is denoted by L(f).

Theorem (Borrelli-Lazarus-T.-Thibert)

The previous construction is a C^1 -isometric embedding of \mathbb{H}^2 and its limit set L(f) is a curve of Hausdorff dimension 1.

Question: By modifying parameters of the construction (initial map, way to reduce the isometric default, ...), what can we have as limit set ?

The limit set

Theorem (De Lellis, 2017)

Let $f_0 : (M, g) \to \mathbb{E}^n$ be a strictly short embedding, then there exists a C^1 -isometric embedding $f : (M, g) \to \mathbb{E}^n$ with the same limit set

 $L(f)=L(f_0)$

Theorem (De Lellis, 2017)

Let $f_0 : (M, g) \to \mathbb{E}^n$ be a strictly short embedding, then there exists a C^1 -isometric embedding $f : (M, g) \to \mathbb{E}^n$ with the same limit set

 $L(f)=L(f_0)$

An amazing corollary

Let's imagine a short embedding f_0 of the hyperbolic plane such that

 $L(f_0)$ is reduced to a point.

Then there exists a C^1 -isometric embedding f of \mathbb{H}^2 such that $f(\mathbb{H}^2) \cup L(f)$ is homeomorphic to a sphere, so a hyperbolic sphere.

Theorem (Borrelli-Lazarus-T.-Thibert)

Let Γ be any smooth immersed closed curve in \mathbb{E}^3 , then there exists a C^1 isometric immersion of $f : \mathbb{H}^2 \to \mathbb{E}^3$ whose limit set L(f) is Γ .

Theorem (Borrelli-Lazarus-T.-Thibert)

Let Γ be any smooth immersed closed curve in \mathbb{E}^3 , then there exists a C^1 isometric immersion of $f : \mathbb{H}^2 \to \mathbb{E}^3$ whose limit set L(f) is Γ .

Remark 1. Circles in \mathbb{H}^2 can be chosen with an arbitrarily large perimeter, however the length of L(f) is finite: the length map is lower semi-continuous.

Theorem (Borrelli-Lazarus-T.-Thibert)

Let Γ be any smooth immersed closed curve in \mathbb{E}^3 , then there exists a C^1 isometric immersion of $f : \mathbb{H}^2 \to \mathbb{E}^3$ whose limit set L(f) is Γ .

Remark 1. Circles in \mathbb{H}^2 can be chosen with an arbitrarily large perimeter, however the length of L(f) is finite: the length map is lower semi-continuous.

Remark 2. Any point of L(f) is at infinite distance of any points of the surface for the induced distance of \mathbb{E}^3 .

The limit set

Theorem (Borrelli-Lazarus-T.-Thibert)

Let Γ be any planar Jordan curve, then there exists a C^1 isometric immersion of $f : \mathbb{H}^2 \to \mathbb{E}^3$ whose limit set L(f) is Γ .

Thanks for your attention!

